• Title/Summary/Keyword: Microbial culture

Search Result 885, Processing Time 0.029 seconds

Assessment of indoor air micro-flora in selected schools

  • Katiyar, Vinita
    • Advances in environmental research
    • /
    • v.2 no.1
    • /
    • pp.61-80
    • /
    • 2013
  • Quantification of viable forms of microbial community (bacteria and fungi) using culture-dependent methods was done in order to characterize the indoor air quality (IAQ). Role of those factors, which may influence the concentration of viable counts of bacteria and fungi, like ventilation, occupancy, outdoor concentration and environmental parameters (temperature and relative humidity) were also determined. Volumetric-infiltration sampling technique was employed to collect air samples both inside and outside the schools. As regard of measurements of airborne viable culturable microflora of schools during one academic year, the level of TVMCs in school buildings was ranged between 803-5368 cfu/$m^3$. Viable counts of bacteria (VBCs) were constituted 63.7% of the mean total viable microbial counts where as viable counts of fungi (VFCs) formed 36.3% of the total. Mean a total viable microbial count (TVMCs) in three schools was 2491 cfu/$m^3$. Outdoor level of TVMCs was varied from 736-5855 cfu/$m^3$. Maximum and minimum VBCs were 3678-286 cfu/m3 respectively. Culturable fungal counts were ranged from 268-2089 cfu/$m^3$ in three schools. Significant positive correlation (p < 0.01) was indicated that indoor concentration of viable community reliant upon outdoor concentration. Temperature seemed to have a large effect (p < 0.05, p < 0.01) on the concentration of viable culturable microbial community rather than relative humidity. Consistent with the analysis and findings, the concentration of viable cultural counts of bacteria and fungi found indoors, were of several orders of magnitude, depending upon the potential of local, spatial and temporal factors, IO ratio appeared as a crucial indicator to identify the source of microbial contaminants.

16S rRNA Gene Sequence-based Microbial Diversity Analyses of the Geothermal Areas of Cisolok, Kamojang, and Likupang in Indonesia (16S rRNA 분석을 통한 인도네시아의 Cisolok, Kamojang, Likupang 지열지대 내 미생물 다양성 분석)

  • Seo, Myung-Ji;Kim, Jeong-Nyeo;Pyun, Yu-Ryang
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.3
    • /
    • pp.268-273
    • /
    • 2012
  • Microbial diversity analyses were performed in several geothermal areas in Indonesia using a culture-independent approach with 16S rRNA gene sequencing. All areas and the majority of samples were noted as being affiliated with Proteobacteria. In addition, unclassified bacteria with no phylum affiliation were detected at an incidence rate of 20.0-26.5% in every location. The majority groupings in the geothermal hot stream in Cisolok belonged to ${\beta}$-Proteobacteria (27.1%) and Cyanobacteria (11.0%), whereas the majority from the volcanic area in Kamojang was ${\gamma}$-Proteobacteria (51.5%) followed by Aquificales (12.9%). The predominant groups around an underwater thermal vent in the sea at Likupang were ${\gamma}$-Proteobacteria (33.3%) and then Bacteroidetes (27.6%). This detailed microbial community analyses of each area strongly support a possible association with plausible community groups and environmental habitats, such as extremely geothermal or marine habitats. This study has significantly contributed to the expansion of scientific knowledge of the microbial community in Indonesia.

Recent Development of Rapid and Automation Technology for Food Microbiological Examination

  • Hiroshi Kurata
    • Proceedings of the Korean Society of Food Hygiene and Safety Conference
    • /
    • 1996.06a
    • /
    • pp.33-33
    • /
    • 1996
  • Interests in the field of rapid methods and automation in microbiology have been growing steadily on an international scale in recent years. International meetings concerned this problem have been held in elsewhere in the world countries since the past twenty years. But, unfortunately in the field of microbial examination in food hygiene, this problem have not yet been developed so much as in the field of clinical microbiology. Today, I would like to introduce you here present aspects of rapid and automation technologies, those which are manly carrying in milk and meats industries. My illustration will be given recent improved technologies using automatic apparatus and instruments along with process of microbial count procedure. Recent direct microbiological counting system (ChemeScan \ulcorner) as real time ultrasensitive analysis created by Cheminex Ltd., France is now most evolutional instrument to provide direct microbial counts, down to one cell, within 30 minutes. The results from these evaluations how a good correlation between the ChemScan system and the standard plate count method. This system will be successful application for not only in the field of pharmacology but also food microbiology. In addition, current identification of microbes by sophisticated instruments suitable for food microbiology, one of which Biology is manual system (BIOLOG\ulcorner), provides reference-level capability at a modes price. For the manual system, the color reactions in the microplate are read by eye and manually keyed into personal computer. Species identification appears on the computer screen within seconds, along with biotype patterns, a list of closely related species, and other useful statistics. In present this is useful application for microbial ecology and epidemiological survey. RiboPrinter system newly produced by DuPont is now focusing among microbiologists in the world, and is one of the biggest microbial characterization system using a DNA-based approach. The technology analyzer is bacterial culture for its genetic fingerprint or riboprint pattern. Finally Bio-cellTracer system for automatic measurement of fungal growth and Fukitori-Maseter, a Surface Hygiene Monitoring Kit by using swabe procedure in food processing environment are briefly illustrated in this presentation.

Boosting Power Generation by Sediment Microbial Fuel Cell in Oil-Contaminated Sediment Amended with Gasoline/Kerosene

  • Aleman-Gama, Elizabeth;Cornejo-Martell, Alan J.;Kamaraj, Sathish Kumar;Juarez, Katy;Silva-Martinez, Susana;Alvarez-Gallegos, Alberto
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.308-320
    • /
    • 2022
  • The high internal resistance (Rint) that develops across the sediment microbial fuel cells (SMFC) limits their power production (~4/10 mW m-2) that can be recovered from an initial oil-contaminated sediment (OCS). In the anolyte, Rint is related to poor biodegradation activity, quality and quantity of contaminant content in the sediment and anode material. While on the catholyte, Rint depends on the properties of the catholyte, the oxygen reduction reaction (ORR), and the cathode material. In this work, the main factors limiting the power output of the SMFC have been minimized. The power output of the SMFC was increased (47 times from its initial value, ~4 mW m-2) minimizing the SMFC Rint (28 times from its initial value, 5000 ohms), following the main modifications. Anolyte: the initial OCS was amended with several amounts of gasoline and kerosene. The best anaerobic microbial activity of indigenous populations was better adapted (without more culture media) to 3 g of kerosene. Catholyte: ORR was catalyzed in birnessite/carbon fabric (CF)-cathode at pH 2, 0.8M Na2SO4. At the class level, the main microbial groups (Gammaproteobacteria, Coriobacteriia, Actinobacteria, Alphaproteobacteria) with electroactive members were found at C-anode and were associated with the high-power densities obtained. Gasoline is more difficult to biodegrade than kerosene. However, in both cases, SMFC biodegradation activity and power output are increased when ORR is performed on birnessite/CF in 0.8 M Na2SO4 at pH 2. The work discussed here can focus on bioremediation (in heavy OCS) or energy production in future work.

Biological Dechlorination of Chlorinated Ethylenes by Using Bioelectrochemical System (생물전기화학시스템을 이용한 염화에틸렌의 생물학적 탈염소화)

  • Yu, Jaecheul;Park, Younghyun;Seon, Jiyun;Hong, Seongsuk;Cho, Sunja;Lee, Taeho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.5
    • /
    • pp.304-311
    • /
    • 2012
  • Chlorinated ethylenes such as perchloroethylene (PCE) and trichloroethylene (TCE) are widely used as industrial solvents and degreasing agents. Because of improper handling, these highly toxic chlorinated ethylenes have been often detected from contaminated soils and groundwater. Biological PCE dechlorination activities were tested in bacterial cultures inoculated with 10 different environmental samples from sediments, sludges, soils, and groundwater. Of these, the sediment using culture (SE 2) was selected and used for establishing an efficient PCE dechlorinating enrichment culture since it showed the highest activity of dechlorination. The cathode chamber of bioelectrochemical system (BES) was inoculated with the enrichment culture and the system with a cathode polarized at -500 mV (Vs Ag/AgCl) was operated under fed-batch mode. PCE was dechlorinated to ethylene via TCE, cis-dichloroethylene, and vinyl chloride. Microbial community analysis with polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) showed that the microbial community in the enrichment culture was significantly changed during the bio-electrochemical PCE dechlorination in the BES. The communities of suspended-growth bacteria and attached-growth bacteria on the cathode surface are also quite different from each other, indicating that there were some differences in their mechanisms receiving electrons from electrode for PCE dechlorination. Further detailed research to investigate electron transfer mechanism would make the bioelctrochemical dechlorination technique greatly useful for bioremediation of soil and groundwater contaminated with chlorinated ethylenes.

Comparative Analysis of Immunosuppressive Metabolites Synthesized by an Entomopathogenic Bacterium, Photorhabdus temperata ssp. temperata, to Select Economic Bacterial Culture Media (곤충병원세균(Photorhabdus temperata ssp. temperata) 유래 곤충 면역 억제물질 생성 비교 연구를 통한 저렴한 세균 배지 선발)

  • Seo, Sam-Yeol;Jang, Ho-Jin;Kim, Kun-Woo;Kim, Yong-Gyun
    • Korean journal of applied entomology
    • /
    • v.49 no.4
    • /
    • pp.409-416
    • /
    • 2010
  • An entomopathogenic bacterium, Photorhabdus temperata ssp. temperata (Ptt), suppresses insect immune responses and facilitates its symbiotic nematode development in target insects. The immunosuppressive activity of Ptt enhances pathogenicity of various microbial pesticides including Bacillus thuringiensis (Bt). This study was performed to select a cheap and efficient bacterial culture medium for large scale culturing of the bacteria. Relatively cheap industrial bacterial culture media (MY and M2) were compared to two research media, Luria-Bertani (LB) and tryptic soy broth (TSB). In all tested media, a constant initial population of Ptt multiplied and reached a stationary phase at 48 h. However, more bacterial colony densities were detected in LB and TSB at the stationary phase compared to two industrial media. All bacterial culture broth gave significant synergism to Bt pathogenicity against third instars of the diamondback moth, Plutella xylostella. Production of bacterial metabolites extracted by either hexane or ethyl acetate did not show any significant difference in total mass among four culture media. Reverse phase HPLC separated the four bacterial metabolites, which were not much different in quantities among four bacterial culture broths. This study suggests that two industrial bacterial culture media can be used to economically culture Ptt in a large scale.

Effects of sludge and $CO_2$ addition on advanced treatment of swine wastewater by using microalgae (미세조류를 이용한 양돈폐수 고도처리에서 슬러지 및 이산화탄소의 첨가의 영향)

  • Lim, Byung-Ran;Park, Ki-Young;Lee, Ki-Say;Lee, Soo-Koo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.307-312
    • /
    • 2011
  • The potential of algal-bacterial culture was investigated for advanced treatment of animal wastewater. Fed-batch experiments were carried out to examine treatability of nitrogen and phosphorus in different microbial consortium: Chlorella vulgaris, activated sludge, three microalgae strains (Scenedesmus, Microcystis, Chlorella) and Bacillus consortium, and three microalgae strains and sludge consortium. Single culture of C. vugaris showed the better efficiency for nitrogen removal but was not good at organic matter and phosphorus removal compared with activated sludge. Three microalgae and Bacillus consortium was best culture among the culture and consortium for pollutants removal tested in this experiment. Effect of $CO_2$ addition was studied by using three microalgae and Bacillus consortium. $CO_2$ addition enhanced T-P removal efficiency up to 60%. However, removal efficiencies of T-N and ammonia nitrogen reduced on the contrary.

Effect of Culture Medium Vitamin Concentration of Culture Medium on Ethanol Production in Syngas Fermentation (합성가스 발효에서 배지 내 Vitamin 농도의 에탄올 생산에 대한 영향)

  • Im, Hongrae;An, Taegwang;Park, Soeun;Kim, Young-Kee
    • New & Renewable Energy
    • /
    • v.17 no.3
    • /
    • pp.8-15
    • /
    • 2021
  • In this study, we assessed the effect of vitamin components (such as biotin, thiamine-HCl, and folic acid) on microorganism microbial growth and ethanol production was examined to enhance increase the ethanol concentration in the Clostridium autoethanogenum culture process using syngas as a sole carbon source. Biotin and folic acid concentrations of 0.2, 2, 20, and 100 ㎍/L were used in the culture experiments at 0.2, 2, 20, and 100 ㎍/L concentrations. The maximum ethanol concentrations of 2.81 g/L and 3.12 g/L were obtained by adding at 0.2 ㎍/L biotin and folic acid, respectively. Moreover, Thiaminethiamine--HCl at concentrations of 0.5, 5, 50, and 250 ㎍/L were was examined evaluated to in the culture experiments. The maximum ethanol concentration of 2.84 g/L was observed at 0.5 ㎍/L of thiamine--HCl. As a resultThus, the optimized concentrations of biotin, thiamine--HCl, and folic acid were determined at 0.2, 0.5, and 0.2 ㎍/L, respectively, for enhancing increasing the ethanol production. In conclusion, the maximum ethanol production was obtained by adding the minimal concentration of vitamins in C. autoethanogenum culture.

Antimicrobial Effect of Nisin against Bacillus cereus in Beef Jerky during Storage

  • Lee, Na-Kyoung;Kim, Hyoun Wook;Lee, Joo Yeon;Ahn, Dong Uk;Kim, Cheon-Jei;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.35 no.2
    • /
    • pp.272-276
    • /
    • 2015
  • The microbial distribution of raw materials and beef jerky, and the effect of nisin on the growth of Bacillus cereus inoculated in beef jerky during storage, were studied. Five strains of pathogenic B. cereus were detected in beef jerky, and identified with 99.8% agreement using API CHB 50 kit. To evaluate the effect of nisin, beef jerky was inoculated with approximately 3 Log CFU/g of B. cereus mixed culture and nisin (100 IU/g and 500 IU/g). During the storage of beef jerky without nisin, the number of mesophilic bacteria and B. cereus increased unlikely for beef jerky with nisin. B. cereus started to grow after 3 d in 100 IU nisin/g treatment, and after 21 d in 500 IU nisin/g treatment. The results suggest that nisin could be an effective approach to extend the shelf-life, and improve the microbial safety of beef jerky, during storage.

des-$Asp^4$-Amastatin, MRK-22 as an Inhibitor of Aminopeptidase M produced by Streptomyces sp. SL20209

  • Kho, Yung-Hee;Ko, Hack-Ryong;Chun, Hyo-Kon;Kim, Seung-Ho;Sung, Nack-Kie
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.154-157
    • /
    • 1995
  • MRK-22, an inhibitor of aminopeptidase M was isolated from the culture broth of Streptomyces sp. SL20209. The structure of MRK-22 was defined to be 3-amino-2-hydroxy-5-methylhexanoyl-valyl-valine, des-$Asp^4$-amastatin, by spectroscopic analysis and this was also confirmed by solid phase synthesis of the inhibitor. The molecular formula and weight of MRK-22 were $C_17H_33N_3O_5$ and MW 359($M^+$), respectively, and its $IC_50$ value against hog kidney AP-M was 0.79 $\mu$ g/ml.

  • PDF