Acknowledgement
이 연구는 교육부의 재원으로 한국연구재단-이공학개인기초연구지원사업(NRF-2018R1D1A1B07043323)의 지원을 받아 수행한 연구입니다.
References
- Kul, B.S., and Ciniviz M., 2021, "An evaluation based on energy and exergy analyses in SI engine fueled with waste bread bioethanol-gasoline blends", Fuel, 286(2), 119375. https://doi.org/10.1016/j.fuel.2020.119375
- Seo, H., Kim, H., and Jeon, E., 2019, "Environmental improvement effect and social benefit: Focusing on bio-heavy oil power generation", New. Renew. Energy, 15(3), 85-92. https://doi.org/10.7849/ksnre.2019.9.15.3.085
- Esmaeili, S.A.H., Sobhani, A., Szmerekovsky, J., Dybing, A., and Pourhashem, G., 2020, "First generation vs. second generation: A market incentives analysis for bioethanol supply chains with carbon policies", Appl. Energy, 277(1), 115606. https://doi.org/10.1016/j.apenergy.2020.115606
- Nunes, L.J.R., Causer, T.P., and Ciolkosz, D., 2020, "Biomass for energy: A review on supply chain management models", Renew. Sust. Energ. Rev., 120, 109658, DOI:10.1016/j.rser.2019.109658.
- Joshi, G., Pandey, J.K., Rana S., and Rawat, D.S., 2017, "Challenges and opportunities for the application of biofuel", Renew. Sust. Energ. Rev., 79, 850-866, DOI: 10.1016/j.rser.2017.05.185.
- Sharma, B., Larroche, C., and Dussap, D.-G., 2020 "Comprehensive assessment of 2G bioethanol production", Bioresour. Technol., 313, 123630, DOI:10.1016/j.biotech.2020.123630.
- Zaafouri, K., Ziadi, M., Farah, R.B., Farid, M., Hamdi, and M., Regaya, I., 2016, "Potential of Tunisian Alfa (Stipa tenacissima) fibers for energy recovery to 2G bioethanol: Study of pretreatment, enzymatic saccharification and fermentation", Biomass Bioenergy, 94, 66-77, DOI:10.1016/j.biombioe.2016.08.008.
- Im, H.R., Kwon, R.K., Park, S.E., and Kim, Y.-K., 2020, "Effect of heavy metal on syngas fermentation using Clostridium autoethanogenum", Appl. Chem. Eng., 31(4), 423-428. https://doi.org/10.14478/ACE.2020.1049
- Liu, C., Luo, G., Wang, W., He, Y., Zhang, R., and Liu, G., 2018, "The effects of pH and temperature on the acetate production and microbial community compositions by syngas fermentation", Fuel, 224, 537-544, DOI: 10.1016/j.fuel.2018.03.125.
- Pardo-Planas, O., Atiyeh, H.K., Phillips, J.R., Aichele, C.P., and Moharmmad, S., 2017, "Process simulation of ethanol production from biomass gasification and syngas fermentation", Bioresour. Technol., 245, 925-932, DOI:10.1016/j.biortech.2017.08.193.
- Piatek, P., Olsson, L., and Nygard, Y., 2020, "Adaptation during propagation improves Clostridium autoethanogenum tolerance towards benzene, toluene and xylenes during gas fermentation", Bioresour. Technol. Rep., 12, 100564, DOI:10.1016/j.biteb.2020.100564.
- Slivka, R.M., Chinn, M.S., Grunden, A.M., and Bruno-Barcena J.M., 2020, "An iterative approach to improve xylose consumption by Clostridium autoethanogenum: From substrate concentration to pH adjustment", Biomass Bioenergy, 140, 105663, DOI:10.1016/j.biombioe.2020.105663.
- Im, H.R., An, T.G., Park, S.E., and Kim, Y.-K., 2019, "Effect of vitamin and Sulfur sources on syngas fermentation using Clostridium autoethanogenum", Appl. Chem. Eng., 30(6), 681-686.
- Anggraini, I.D., Kresnowati, P., Purwadi, R., and Setiadi, T., 2018, "Bioethanol production via syngas fermentation", MATEC Web Conf., 156, 03025, DOI:10.1051/matecconf/201815603025.
- Jack, J., Lo, J., Maness, P.-C., and Ren, Z.J., 2019, "Directing Clostridium ljungdahlii fermentation products via hydrogen to carbon monoxide ratio in syngas", Biomass Bioenergy, 124, 95-101, OI:10.1016/j.biombioe.2019.03.011.
- Sim, J.H., Kamaruddin, A.H., and Long, W.S., 2008, "Biocatalytic conversion of CO to acetic acid by Clostridium aceticum - Medium optimization using response surface methodology (RSM)", Biochem. Eng. J., 40(2), 337-347. https://doi.org/10.1016/j.bej.2008.01.006
- Urgerman, A.J., and Heindel, T.J., 2007, "Carbon monoxide mass transfer for syngas fermentation in a stirred tank reactor with dual impeller configurations", Biotechnol. Progr., 23, 613-620, DOI:10.1021/bp060311z.
- Saxena, J., and Tanner, R.S., 2011, "Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen Clostridium ragsdalei" J. Ind. Microbiol. Biot., 38(4), 513-521. https://doi.org/10.1007/s10295-010-0794-6
- Devi, M.P., Mohan, S.V., Mohanakrishna, G., and Sarma, P.N., 2010, "Regulatory influence of CO2 supplementation on fermentative hydrogen production process", Ind. J. Hydrogen Energy, 35(19), 10701-10709. https://doi.org/10.1016/j.ijhydene.2010.03.024
- Nalakath, H., Veiga, M.C., and Kennes, C., 2011, "Biological conversion of carbon monoxide: Rich syngas or waste gases to bioethanol", Biofuel. Bioprod. Biorefin., 5(1), 93-114. https://doi.org/10.1002/bbb.256
- Adams, S. S., Scott, S., and Ko, C.-W., 2015, "Method for sustaining microorganism culture in syngas fermentation process in decreased concentration or absence of various substrates", US Patent No. 9034618, May 19, 2015.
- Phillips, J.R., Atiyeh, H.K., Tanner, R.S., Torres, J.R., Saxena, J., Wilkins, M.R., and Huhnke, R.L., 2015, "Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: Medium development and culture techniques", Bioresour. Techcnol. 190, 114-121, DOI: 10.1016/j.biortech.2015.04.043.
- Sun, X., Atiyeh, H.K., Tanner, R.S., and Huhnke, R.L., 2019, "Enhanced ethanol production from syngas by Clostridium ragsdalei in continuous stirred tank reactor using medium with poultry litter biochar", Appl. Energy. 236, 1269-1279, DOI:10.1016/j.apenergy.2018.12.010.
- Kundiyana, D.K., Huhnke, R.L., and Wilkins, M.R., 2011, "Effect of nutrient limitation and two-stage continuous fermentor design on productivities during "Clostridium ragsdalei", syngas fermentation", Bioresour. Technol. 102(10), 6058-6064. https://doi.org/10.1016/j.biortech.2011.03.020
- Ruangsomboon, S., Sornchai, P., and Prachom, N., 2018, "Enhanced hydrocarbon production and improved biodiesel qualities of Botryococcus braunii KMITL 5 by vitamins thiamine, biotin and cobalamin supplementation", Algal Res. 29, 159-169, DOI: 10.1016/j.algal.2017.11.028.
- Smart, K.F., and Boi, S.L., 2015, "Fermentation process for the production and control of pyruvate-derived products", US patent No. 9701987, July 11, 2017.
- Lee, H., Atkin, A. L., Barbosa, M. F. S., Dorscheid, D. R., and Schneider, H., 1988, "Effect of biotin limitation on the conversion of xylose to ethanol and xylitol by Pachysolen tannophilus and Candida guilliermondii", Enzyme Microb. 10(2), 81-84, DOI: 10.1016/0141-0229(88)90002-6.
- Varaprasad, D., Narasimham, D., Paramesh, K., Sudha, N.R., Himabindu, Y., Kumari, M.K., Parveen, S.N., and Chandrasekhar, T., 2019, "Improvement of ethanol production using green alga Cholorococcum minutum", Environ. Technol. 42(9), 1383-1391, DOI:10.1080/09593330.2019.1669719.
- Evans, R.C., and Garraway, M.O., 1976, "Effect of thiamine on ethanol and pyruvate production in Helminthosporium maydis", Plant Physiol. 57(5), 812. https://doi.org/10.1104/pp.57.5.812
- Maynard, C., Cummins, L., Green, J., and Weinkove, D., 2018, "A bacterial route for folic acid supplementation" BMC Biol., 16(1), 67, DOI:10.1186/s12915-018-0534-3.
- Nlimbalkar, R.R., Khedkar, M.A., Chavan, P.V., and Bankar, S.B., 2019, "Enhanced biobutanol production in folic acid-induced medium by using Clostridium acetobutylicum NRRL B-527", ACS Omega, 4(7), 12978-12982. https://doi.org/10.1021/acsomega.9b00583