• Title/Summary/Keyword: Microbial count

Search Result 476, Processing Time 0.036 seconds

Effect of the Combination of Fermentation Temperature and Time on the Properties of Baechu Kimchi (발효 온도-시간 조합이 배추김치의 품질 특성에 미치는 영향)

  • Kang, Jeong-Hwa;Kang, Sun-Hee;Ahn, Eun-Sook;Yoo, Maeng-Ja;Chung, Hee-Jong
    • Journal of the Korean Society of Food Culture
    • /
    • v.19 no.1
    • /
    • pp.30-42
    • /
    • 2004
  • In order to examine the effect of the combination of fermented temperature and time on Baechu kimchi in a kimchi refrigerator, Baechu kimchi was fermented at four different modes of the fermentation temperature and time for 16 weeks and analyzed the properties of Baechu kimchi. The pH, Baechu kimchi fermented at $20^{\circ}C$ for 24 hours/stored at $-1^{\circ}C$ and Baechu kimchi fermented at $5^{\circ}C$ for 6 days/stored at $-1^{\circ}C$, decreased rapidly during first week and then decreased very slowly. The hardness and the chewiness of Baechu kimchi fermented at high temperature were higher and the values were decreased when the fermentation continued. In sensory evaluation, carbonated flavor in Baechu kimchi fermented at $20^{\circ}C$ for 24 hours/stored at $-1^{\circ}C$ was the best after 4 weeks, and Baechu kimchi fermented at $5^{\circ}C$ for 3 days or 6 days/stored at $-1^{\circ}C$ was the best after 8 weeks. The scores for sourness were the highest on 8 weeks and 12 weeks in kimchi fermented at $20^{\circ}C$ for 24 hours/stored at $-1^{\circ}C$ and fermented at $5^{\circ}C$ for 3 days or 6 days/stored at $-1^{\circ}C$, respectively. The sensory scores for overall acceptability were the best on 4 weeks and 8 week in kimchi fermented at $20^{\circ}C$ for 24 hours/stored at $-1^{\circ}C$ and fermented at $5^{\circ}C$ for 3 days or 6 days/stored at $-1^{\circ}C$, respectively. Total microbial count was increased as the temperature of fermentation increased. Counts of Leuconostoc spp. reached to the highest after 6 days and counts of Lactobacillus spp reached to the highest after 5 days in kimchi fermented at $20^{\circ}C$ for 24 hours/stored at $-1^{\circ}C$. From these results, it was concluded that it required 4 weeks to eat most edible Baechu kimchi in kimchi refrigerator fermented at $20^{\circ}C$ for 24 hours/stored at $-1^{\circ}C$, and 8 weeks to eat most edible Baechu kimchi in kimchi refrigerator fermented at $5^{\circ}C$ for 3 days or 6 days/stored at $-1^{\circ}C$.

Effects of Optimized Co-treatment Conditions with Ultrasound and Low-temperature Blanching Using the Response Surface Methodology on the Browning and Quality of Fresh-cut Lettuce (반응표면분석법으로 최적화한 초음파와 저온 블랜칭의 병용처리 조건이 신선편이 양상추의 갈변과 품질에 미치는 영향)

  • Kim, Do-Hee;Kim, Su-Min;Kim, Han-Bit;Moon, Kwang-Deog
    • Food Science and Preservation
    • /
    • v.19 no.4
    • /
    • pp.470-476
    • /
    • 2012
  • Enzymatic action and microbial growth degrade the quality of fresh-cut lettuce. Browning, a bad smell, and softening during storage are the major forms of quality deterioration. Health-oriented consumers tend to avoid foods treated with chemicals to maintain their freshness. This study was conducted to evaluate the change in the quality of fresh-cut lettuce with combined low-temperature blanching (LB) and ultrasonication (US). The optimum condition was selected using the response surface methodology (RSM), through a regression analysis with the following independent variables; the ultrasonication time (X1), blanching temperature (X2), blanching time (X3), and dependent variable; ${\Delta}E$ value (y). It was found that the condition with the lowest ${\Delta}E$ value occurred with combined 90s US and $45^{\circ}C$ 90s LB (US+LB). The combined treatment group (US+LB) was stored at $10^{\circ}C$ for 9 days with the control group and each single-treatment group, with low-temperature blanching and ultrasonication. Overall, the US+LB group had a significantly high $L^*$ value, which indicates significantly low $a^*$, $b^*$, ${\Delta}E$, browning index, PPO, and POD activity values, and a low total bacteria count (p < 0.05). The US+LB group also had the highest sensory score (except for aroma and texture; p > 0.05).

Effect of LED and QD-LED(Quantum Dot) Treatments on Production and Quality of Red Radish(Raphanus sativus L.) Sprout (LED와 QD-LED(Quantum Dot) 광처리가 적무 새싹의 생산과 품질에 미치는 영향)

  • Choi, In-Lee;Wang, Lixia;Lee, Ju Hwan;Han, Su Jung;Ko, Young-Wook;Kim, Yongduk;Kang, Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.265-272
    • /
    • 2019
  • The purpose of this study was to investigate the effects of LED and QD-LED (Quantum Dot) irradiation on seed germination, antioxidant ability, and microbial growth, during red radish (Raphanus sativus L.) sprouts cultivation. Irradiated light was blue, red, blue + red and blue + red + far red (QD-LED) lights, and the controls were a fluorescent lamp (FL), and dark condition. Germination rate of red radish was highest in the dark condition. The plant height and fresh weight of red radish sprouts that irradiated each light for 24 hrs after 7 days growing in dark condition, did not shown significantly difference among treatments. After 24 hrs of light irradiation, cotyledon green was best in blue + red light, and the red hypocotyl was excellent in blue light and QD-LED light. DPPH and phenol contents were high in dark and blue + red light treatment, and anthocyanin content was high in blue light and QD-LED light. Total aerobic counts were similar in all treatments and did not show bactericidal effect, whereas E. coli count was lowest in QD-LED light treatment, and yeast and mold counts were lowest in FL only treatment. Results suggest that when red radish seeds were germinated in dark condition and cultivated for 7 days as sprouts, and then treated with blue light or QD-LED light for 24 hrs, the seeds produced good quality red radish sprouts with greenish cotyledon, reddish hypocotyl, high anthocyanin content, and lower level of E coli contamination.

Microbiological Safety Evaluation on Ice Cream and Ice Pop Products (빙과류의 품목별 제품의 미생물학적 안전성 평가)

  • Yu, Jeong-Wan;Kim, So-Hyun;Hong, Dong-Lee;Kim, Hyeon-Jae;Jeong, Eun-Joo;Lee, Jae-Hwa;Yang, Ji-Young;Lee, Yang-Bong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.4
    • /
    • pp.367-373
    • /
    • 2019
  • In order to evaluate the microbiological safety of ice cream products, the total viable bacterial counts were measured in 6 kinds of ice pops, 5 kinds of non-milk fat ice cream, and 5 kinds of milk fat ice cream, sold in local markets. In addition, E. coli, S. aureus, B. cereus, and L. monocytogenes were artificially inoculated in three types of ice cream products and stored at $-5^{\circ}C$, $-10^{\circ}C$, and $-18^{\circ}C$, respectively, and after inoculation, viable cells were measured periodically. As a result of the total viable count, about 1~2 log CFU/mL was detected in 16 kinds of ice cream products. As a result of inoculation with microorganisms at various temperatures, the number of viable cells decreased as the storage period became longer, and the higher the storage temperature, the faster the microorganisms died. Especially, the microorganisms were killed faster in the ice pop products than in the other ice cream products, and the microorganisms were killed relatively slower in the milk ice cream. L. monocytogenes and S. aureus were relatively stable in frozen conditions compared to other microorganisms. The microbial contamination of commercial ice cream was lower than the allowable standard of the Korean Food Code. Microorganisms did not proliferate when the microorganism was inoculated at freezing temperature. Therefore, it is expected that the microbiological safety of frozen foods will be ensured if the sanitary control and disinfection of raw materials are thoroughly carried out during the production of frozen confections and the temperature control during distribution and storage is well maintained.

Effect of Chlorine Dioxide, Cold Plasma Gas Sterilization and MAP Treatment on the Quality and Microbiological Changes of Paprika During Storage (이산화염소 및 저온 플라즈마 가스 살균 및 MAP 처리가 파프리카의 저장 중 품질과 미생물학적 변화에 미치는 영향)

  • In-Lee, Choi;Joo Hwan, Lee;Yong Beom, Kwon;Yoo Han, Roh;Ho-Min, Kang
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.3
    • /
    • pp.223-229
    • /
    • 2022
  • This study was conducted to investigate the effect of packaging methods and sterilization treatment on storability and microbial control in paprika fruits. When treated with chlorine dioxide gas for 3, 6, and 12 hours and cold plasma gas for 1, 3, and 6 hours, and then packed in a carton box and stored in a 8 ± 1℃ chamber for 7 days, chlorine dioxide treated 12 hours and plasma treated 6 hours was prevented the development of E·coli and YM(yeast and mold). Accordingly, the control was treated with chlorine dioxide for 12 hours and plasma for 6 hours, packed using a carton box and 40,000 cc·m-2·day-1·atm-1 OTR film (MAP), and stored in a 8 ± 1℃ chamber for 20 days. Fresh weight loss rate during storage was less than 1% in the MAP treatments, and the visual quality of the MAP treatments was above the marketability limit until the end of storage. There was no difference in the contents of oxygen, carbon dioxide, and ethylene in the film. In the case of firmness, the chlorine dioxide treatments was low, and the Hunter a* value, which showed chromaticity, was highest in the Plasma 6h MAP treatment. Off-odor was investigated in the MAP treatments, but it was very low. The rate of mold growth on the fruit stalk of paprika was the fastest and highest in the chlorine dioxide treated box packaging treatments, and the lowest in the chlorine dioxide treated MAP treatments at the end of storage. The aerobic count in the pulp on the storage end date was the lowest in the plasma treated box packaging treatments, the lowest number of E·coli in the chlorine dioxide treated MAP treatments, and the lowest yeast & mold in the chlorine dioxide treated box packaging treatments. As a result, for the inhibition of microorganisms during paprika storage, it is considered appropriate to treat plasma for 6 hours before storage regardless of the packaging method.

Microbiological and Enzymological Studies on the Flavor Components of Sea Food Pickles (젓갈등속(等屬)의 정미성분(呈味成分)에 관(關)한 미생물학적(微生物學的) 및 효소학적(酵素學的) 연구(硏究))

  • Lee, Ke-Ho
    • Applied Biological Chemistry
    • /
    • v.11
    • /
    • pp.1-27
    • /
    • 1969
  • More than thirty kinds of sea food pickles have been eaten in Korea. Out of these salted yellow tail pickle, salted clam pickle, salted oyster pickle, and salted cuttlefish pickle were employed for the analysis of their components, identification of main fermenting microbes, and determination of enzyme characteristics concerned. Also studied was the effect of enzymic action of microbes, which are concerned with the fermenting of pickles, on the production of flavorous 5'-mononucleotides and amino acids. The results are summarized as follows: 1. Microflora observed in the pickles are: (a) Total count of viable cells after 1-2 months of pickling was found to be $10^7$ and that after 6 months decreased to $10^4$. (b) Microbial occurence in the early stage of pickling was observed to be 10-20% Micrococcus spp., 10-20% Brevibacterium spp., 0-30% Sarcina spp., 20-30% Leuconostoc spp., ca 30% Bacillus spp., 0-10% Pseudomonas spp., 0-10% Flavobacterium spp., and 0-20% yeast. (c) Following the early stage of pickling, mainly halophilic bacteria such as Bacillus subtilis, Leuconostoc mesenteroides, Pediococcus halophilus and Sarcina litoralis, were found to exhibit an effect on the fermentation of pickle and their enzyme activities were in direct concern in fermentation of pickles. (d) Among the bacteria participating in the fermentation, Sarcina litoralis 8-14 and 8-16 strains were in need of high nutritional requirement and the former was grown only in the presence of purine, pyrimidine and cystine and the latter purine, pyrimidine and glutamic acid. 2. Enzyme characteristics studied in relation to the raw materials and the concerned microbes isolated are as follows: (a) A small amount of protease was found in the raw materials and 30-60% decrease in protease activity was demonstrated at 7% salt concentration. (b) Protease activity of halophilic bacteria, Bacillus subtilis 7-6, 11-1, 3-6 and 9-4 strains, in the complete media decreased by 10-30% at the 7% salt concentration and that of Sarcina litoralis 8-14 and 8-16 strains decreased by 10-20%. (c) Proteins in the raw materials were found to be hydrolyzed to yield free amino acids by protease in the fermenting microbes. (d) No accumulation of flavorous 5'-mononucleotides was demonstrated because RNA-depolymerase in the raw materials and the pickles tended to decompose RNA into nucleoside and phosphoric acid. (e) The enzyme produced in Bacillus subtilis 3-6 strain isolated from the salted clam pickles, was ascertained to be 5'-phosphodiesterase because of its ability to decompose RNA and thus accumulating 5'-mononucleotide. (f) It was demonstrated that the activity of phosphodiesterase in Bacillus subtilis 3-6 strain was enhanced by some components in the corn steep liquor and salted clam pickle. The enzyme activity was found to decrease by 10-30% and 40-60% at the salt concentration of 10% and 20%, respectively. 3. Quantitative data for free amino acids in the pickles are as follows: (a) Amounts of acidic amino acids such as glutamic and aspartic acids in salted clam pickle, were observed to be 2-10 times other pickles and it is considered that the abundance in these amino acids may contribute significantly to the specific flavor of this food. (b) Large amounts of basic amino acids such as arginine and histidine were found to occur in salted yellow tail pickle. (c) It is much interesting that in the salted cuttlefish pickle the contents of sulfur-containing amino acids were exceedingly high compared with those of others: cystine was found to be 17-130 times and methionine, 7-19 times. (d) In the salted oyster pickle a high content of some essential amino acids such as lysine, threonine, isoleucine and leucine, was demonstrated and a specific flavor of the pickle was ascribed to the sweet amino acids. Contents of alanine and glycine in the salted oyster pickle were 4 and 3-14 times as much as those of the others respectively. 4. Analytical data for 5'-mononucleotides in the pickles are as follows: (a) 5'-Adenylic acid and 3'-adenylic acid were found in large amounts in the salted yellow tail pickle and 5'-inosinic acid in lesser amount. (b) 5'-Adenylic acid, especially 3'-adenylic acid predominated in amount in the salted oyster pickle over that in the other pickles. (c) The salted cuttlefish pickle was found to contain only 5'-adenylic acid and 3'-adenylic acid. It has become evident from the above fact that clam and the invertebrate lack of adenylic deaminase and contain high content of adenylic acid. Thus, they were demonstrated to be the AMP-type. (d) 5'-Inosinic acid was contained in the salted yellow tail pickle in a significant concentration, and it might be considered to be IMP-type. 5. Comparative data for flavor with regard to the flavorous amino acids and the contents of 5'-mononucleotides are: (a) A specific flavor of salted yellow tail pickle was ascribed to the abundance in glutamic acid and aspartic acid, and to the existence of a small amount of flavorous 5'-inosinic acid. The combined effect of these components was belived to exhibit a synergistic action in producing a specific fiavor to the pickle. (b) A specific flavor of salted clam pickle has been demonstrated to be attributable to the richness in glutamic acid and aspartic acid rather than to that of 5'-mononucleotides.

  • PDF