• Title/Summary/Keyword: Microbial colony

Search Result 208, Processing Time 0.026 seconds

Fermentation Characteristics of Makgeolli Containing Aronia (Aronia melanocarpa, Black chokeberry) (아로니아를 첨가한 막걸리의 발효특성)

  • Park, Mi-Jung;Kim, Hyeong-Kook;Choi, Kyong-Kun;Koo, Bon-Yeol;Lee, Si-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.27-35
    • /
    • 2016
  • This study was conducted to investigate the quality characteristics of makgeolli containing aronia, (Aronia melanocarpa (0-1.9%)). After an initial decrease in the range of pH from 4.93-5.04 to 3.43-3.61 over a period of 6 days, it gradually increased until 14 days. As the fermentation proceeded, sugar contents and reducing sugar contents initially increased in majority of the samples, and subsequently decreased after 2 days. Total acidity contents increased until 6 days and then became higher as the content of aronia increased. Total acidity levels were within the range of 0.50-0.62%. After 14 days of fermentation, the alcohol contents ranged between 11.97 and 14.13%. Over the same time span, the amino acid content increased from a range of 1.57-2.22 to 5.86-6.92%. The microbial cell count and yeast colony count increased over the initial 4 days and then gradually decreased. Total polyphenol content and total flavonoid of aronia makgeolli were significantly higher than those of the control group. Based on the sensory evaluation, makgeolli with 1.3% aronia demonstrated the highest overall acceptance.

Production of fermented apple juice using Lactobacillus plantarum JBE245 isolated from Korean traditional Meju (메주에서 분리한 Lactobacillus plantarum JBE245를 이용한 사과 발효 음료 제조)

  • Heo, Jun;Park, Hae-Suk;Uhm, Tai-Boong
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.445-453
    • /
    • 2016
  • Eighty-four strains of lactic acid bacteria were isolated from Korean fermented foods for the production of fermented apple juice. Among these strains, the JBE245 strain that showed rapid growth and food functionality was selected and identified as Lactobacillus plantarum. This strain reached the stationary phase after 24 h fermentation at $30^{\circ}C$ with $1.5{\times}10^8$ colony forming unit (CFU)/mL of viable cells, and maintained its viability levels even after 14 days of storage. During fermentation, the ${\alpha}-glucosidase$ inhibitory activity (40.4%), total polyphenol content (583.6 mg gallic acid equivalent (GAE)/mL), and 2,2-diphenyl-l-picryl-hydrazyl hydrate (DPPH) radical scavenging activity (52%) were increased. As judged by a sensory test, the overall preference for the fermented juice (4.22) was comparable to that for the unfermented juice (4.72), indicating that fermentation does not significantly affect the sensory characteristics of apple juice. Consequently, the fermented beverage containing L. plantarum JBE245 and apple juice is a promising functional health food.

Comparison of In vitro Anti-Biofilm Activities of Natural Plant Extracts Against Environment Harmful Bacteria (천연물 성분을 이용한 환경 유해미생물의 biofilm 생성 저해능 비교에 관한 연구)

  • Kang, Eun-Jin;Park, Ji Hun;Jin, Seul;Kim, Young-Rok;Do, Hyung-Ki;Yang, Woong-Suk;Lee, Jae-Yong;Hwang, Cher-Won
    • Journal of Environmental Science International
    • /
    • v.28 no.2
    • /
    • pp.225-233
    • /
    • 2019
  • In this study, we investigated the in vitro anti-biofilm activities of plant extracts of chives (Allium tuberosum), garlic (Allium sativum), and radish (Raphanus sativus L.) against environment harmful bacteria (gram-positive Staphylococcus aureus and, gram-negative Salmonella typhimurium and Escherichia coli O157:H7). In the paper disc assay, garlic extracts exhibited the highest anti-biofilm activity. The Minimal Inhibitory Concentration (MIC) of all plant extracts was generally higher for gram-negative bacteria than it was for gram-positive bacteria. Gram-negative bacteria were more resistant to plant extracts. The tetrazolium dye (XTT) assay revealed that, each plant extract exhibited a different anti-biofilm activity at the MIC value depending on the pathogen involved. Among the plant extracts tested, garlic extracts (fresh juice and powder) effectively reduced the metabolic activity of the cells of food-poisoning bacteria in biofilms. These anti-biofilm activities were consistent with the results obtained through light microscopic observation. Though the garlic extract reduced biofilm formation for all pathogens tested, to elucidate whether this reduction was due to antimicrobial effects or anti-biofilm effects, we counted the colony forming units of pathogens in the presence of the garlic extract and a control antimicrobial drug. The garlic extract inhibited the E. coli O157:H7 biofilm effectively compared to the control antimicrobial drug ciprofloxacin; however, it did not inhibit S. aureus biofilm significantly compared to ciprofloxacin. In conclusion, garlic extracts could be used as natural food preservatives to prevent the growth of foodborne pathogens and elongater the shelf life of processed foods.

A Study of the Diversity and Profile for Extracellular Enzyme Production of Aerobically Cultured Bacteria in the Gut of Muraenesox cinereus (갯장어(Muraenesox cinereus) 장으로부터 호기적 조건에서 분리된 미생물의 다양성 및 세포외 효소 생산능 분석에 관한 연구)

  • Lee, Yong-Jik;Oh, Do-Kyoung;Kim, Hye Won;Nam, Gae-Won;Sohn, Jae Hak;Lee, Han-Seung;Shin, Kee-Sun;Lee, Sang-Jae
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.248-255
    • /
    • 2019
  • This research confirmed the diversity and characterization of gut microorganisms isolated from the intestinal organs of Muraenesox cinereus, collected on the Samcheonpo Coast and Seocheon Coast in South Korea. To isolate strains, Marine agar medium was basically used and cultivated at $37^{\circ}C$ and pH7 for several days aerobically. After single colony isolation, totally 49 pure single-colonies were isolated and phylogenetic analysis was carried out based on the result of 16S rRNA gene DNA sequencing, indicating that isolated strains were divided into 3 phyla, 13 families, 15 genera, 34 species and 49 strains. Proteobacteria phylum, the main phyletic group, comprised 83.7% with 8 families, 8 genera and 26 species of Aeromonadaceae, Pseudoalteromonadaceae, Shewanellaceae, Enterobacteriaceae, Morganellaceae, Moraxellaceae, Pseudomonadaceae, and Vibrionaceae. To confirm whether isolated strain can produce industrially useful enzyme or not, amylase, lipase, and protease enzyme assays were performed individually, showing that 39 strains possessed at least one enzyme activity. Especially the Aeromonas sp. strains showed all enzyme activity tested. This result indicated that isolated strains have shown the possibility of the industrial application. Therefore, this study has contributed for securing domestic genetic resources and the expansion of scientific knowledge of the gut microbial community in Muraenesox cinereus of South Korea.

Impacts of Different Organic Fertilizers on Soil Fertility and Soil Respiration for a Corn (Zea mays L.) Cropping System (옥수수 밭에서 유기질 비료가 토양 비옥도 및 토양 호흡에 미치는 영향)

  • Mavis, Brempong Badu;Hwang, Hyun Young;Lee, Sang Min;Lee, Cho Rong;An, Nan Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.151-163
    • /
    • 2022
  • This study was conducted to promote organic fertilizer(s) that sustain soil productivity for corn production and protect the environment as required by the Act on the promotion of eco-friendly agriculture. It was conducted at the research station of the Organic Agriculture Division of the National Institute of Agricultural. The treatments consisted of Compost (Com), Bokashi as fermented organic fertilizer (FOF), and mixed expeller pressed cake (PC). They were applied at 174 kg N /ha to field corn, together with a 'no fertilizer' check in Randomized Complete Block Design. At eight weeks after transplanting (WAT) corn, compost increased soil carbon (C) and nitrogen (N) to 7.48 and 0.76 g/kg respectively, while other fertilizers maintained the initial levels (before treatment application). At corn harvest (13 WAT), soil chemical properties (total C, total N, pH, electrical conductivity, P2O5, Ca, K, and Mg) were similar among all organic fertilizer treatments. For soil respiration, FOF increased soil CO2 respiration by 31-76% above other fertilizer treatments. However, there were no prominent changes in the trends of CH4 fluxes following the two mechanical weeding operations. Fermented organic fertilizer affected N2O emissions between 87-96% lower than other fertilizer treatments. Compared to the initial microbial densities, FOF increased fungi and actinomycete colony foming unit by 25 and 16% at harvest. Therefore, the additional potential of improving soil biological fertility and local availability of raw materials make FOF a better option to sustain soil productivity while protecting the environment.

Effect of Selected Inoculant Applications on Chemical Compositions and Fermentation Characteristics of High Moisture Rye Silage

  • Lee, Seong Shin;Jeong, Seung Min;Seo, Myeong Ji;Joo, Young Ho;Paradhipta, Dimas Hand Vidya;Seong, Pil Nam;Kim, Sam Churl
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.3
    • /
    • pp.155-161
    • /
    • 2022
  • The aim of this study was to investigate the effect of isolated lactic acid bacteria (LAB) on the quality of high moisture rye silage. Rye forage (Secale cereale L.) was harvested at the heading stage (27.3% of dry matter (DM)) and cut into approximately 3-5 cm lengths. Then, the forage divided into 4 treatments with different inoculants: 1) No additives (CON); 2) Lactobacillus brevis strain 100D8 at a 1.2 × 105 colony-forming unit (cfu)/g of fresh forage (LBR); 3) Leuconostoc holzapfelii strain 5H4 at a 1.0 × 105 cfu/g of fresh forage (LHO); and 4) Mixture of LBR and LHO (1:1 ratio) applied at a 1.0 × 105 cfu/g of fresh forage (MIX). About 3 kg of forage from each treatment was ensiled into a 20 L mini-bucket silo in quadruplicate for 100 days. After silo opening, silage was collected for analyses of chemical compositions, in vitro nutrient digestibilities, fermentation characteristics, and microbial enumerations. The CON silage had the highest concentrations of neutral detergent fiber and acid detergent fiber (p = 0.006; p = 0.008) and a lowest in vitro DM digestibility (p < 0.001). The pH was highest in CON silage, while lowest in LBR and MIX silages (p < 0.001). The concentrations of ammonia-N, lactate, and acetate were highest in LBR silage (p = 0.008; p < 0.001; p < 0.001). Propionate and butyrate concentrations were highest in CON silage (p = 0.004; p < 0.001). The LAB and yeast counts were higher in CON and LHO silages compare to LBR and MIX silages (p < 0.001). However, the mold did not detect in all treatments. Therefore, this study could conclude that L. brevis 100D8 and Leu. holzapfelii strain 5H4 can improve the digestibility and anti-fungal activity of high moisture rye silage.

Surface Roughness of Dentin and Formation of Early Cariogenic Biofilm after Silver Diamine Fluoride and Potassium Iodide Application (Silver Diamine Fluoride와 요오드화 칼륨 도포 후 상아질 표면 거칠기와 초기 우식원성 세균막 형성)

  • Haeni, Kim;Howon, Park;Juhyun, Lee;Siyoung, Lee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.2
    • /
    • pp.140-148
    • /
    • 2022
  • This study aimed to evaluate the effect of silver diamine fluoride (SDF) and potassium iodide (KI) on the formation of cariogenic biofilm and surface roughness in vitro. A total of 48 bovine dentin specimens with artificially induced caries were prepared and divided into 3 groups of 16: untreated control, SDF-treated, and SDF-treated followed by KI (SDFKI). Ten specimens from each group were used to observe microbial adhesion. Multispecies cariogenic biofilms including Streptococcus mutans, Lactobacillus casei, and Candida albicans were cultured on the specimens. Microbes were cultured for 24 hours, and the colony-forming unit was calculated. The remaining specimens were observed by atomic force microscope and scanning electron microscope (SEM). The number of bacteria was significantly lower in the SDF and SDFKI groups. KI did not inhibit the antibacterial activity of SDF significantly. SEM images showed particles generated after SDF and SDFKI application were deposited on the dentin, but there was no significant difference in surface roughness between the 3 groups. This study confirmed that SDF and SDFKI application did not have a significant effect on the surface roughness of dentin, but effectively inhibited the formation of the early cariogenic bacterial film after 24 hours compared to the control.

Laying hen responses to multi-strain Bacillus-based probiotic supplementation from 25 to 37 weeks of age

  • Elijah Ogola Oketch;Myunghwan Yu;Jun Seon Hong;Nuwan Chamara Chaturanga;Eunsoo Seo;Hans Lee;Rafael Gustavo Hermes;Natasja Smeets;Apichaya Taechavasonyoo;Susanne Kirwan;Raquel Rodriguez-Sanchez;Jung Min Heo
    • Animal Bioscience
    • /
    • v.37 no.8
    • /
    • pp.1418-1427
    • /
    • 2024
  • Objective: This study aimed to investigate the efficacy of Bacillus-based probiotics supplemented at two different levels to modulate the productive performance, egg quality, tibia traits, and specific cecal bacteria counts of Hy-Line Brown layers from 25 to 37 weeks of age. Methods: A total of 216 twenty-five-week-old hens were randomly distributed into 3 experimental diets with 12 replicates of 6 birds per cage. Diets included basal diet supplemented with 0 (CON), 3×108 (PRO1), or 3×109 (PRO2) colony-forming unit (CFU) of the test probiotic containing Bacillus subtilis PB6, Bacillus subtilis FXA, and Bacillus licheniformis G3 per kilogram of feed. Results: Improved egg weights and mass at 29 weeks; and feed intake at 31 weeks (p<0.10) were noticed with the probiotic-supplemented PRO1 and PRO2 diets. Considering egg quality, the shell thickness, Haugh units, and yolk color were improved; but yolk cholesterol was lowered (p<0.05) with PRO1 and PRO2 diets at 29 weeks. At both 33 and 37 weeks, the egg-breaking strength, shell color and thickness, albumen height, Haugh units, and yolk color were improved; but yolk cholesterol was similarly lowered (p<0.05) with the PRO1 and PRO2 diets. Improved tibia Ca, ash, weights, and density; and raised cecal counts of Bifidobacteria and Lactobacilli (p<0.05) were noticed with PRO1 and PRO2 diets. Improved tibia P but reduced Clostridia counts (p<0.10) were also observed with the PRO1 and PRO2 diets. Conclusion: Probiotic supplementation of Bacillus subtilis PB6, Bacillus subtilis FXA, and Bacillus licheniformis G3 at 3×108 CFU/kg of feed is adequate to significantly improve egg quality, lower yolk cholesterol, enhance several tibia traits, and raise the populations of beneficial cecal bacteria. Modest improvements in several productive parameters and tibia P but reduced Clostridia were also observed; and could warrant further investigation of probiotic effects beyond the current test period.

Effects of compatibility of Clostridium butyricum and Bacillus subtilis on growth performance, lipid metabolism, antioxidant status and cecal microflora of broilers during the starter phase

  • Xu Zhao;Jiarong Zhuang;Faling Zhang;Hongtao Li;Juan Yu;Chengli Wang;Tengjiao Lv;Qingzhen Li;Jimei Zhang
    • Animal Bioscience
    • /
    • v.37 no.11
    • /
    • pp.1933-1944
    • /
    • 2024
  • Objective: This study aimed to determine the effects of compatibility of Clostridium butyricum and Bacillus subtilis on growth performance, lipid metabolism, antioxidant status and cecal microflora of broilers during the starter phase. Methods: A total of 600 1-day-old Ross 308 broilers were randomly divided into two groups with six replicates in each group. Chickens in the control group were fed a basal diet, while chickens in the experimental group were fed a diet supplemented with 2×108 colony forming units (CFU)/kg of C. butyricum and 1×109 CFU/kg of B. subtilis. The experimental period was 21 days. Results: Addition of C. butyricum and B. subtilis significantly increased (p<0.05) the body weight and liver nicotinamide adenine dinucleotide phosphate-malic enzyme (NADP-ME) activity of broilers, enhanced (p<0.05) the average daily gain and average daily feed intake of broilers. However, the addition of C. butyricum and B. subtilis did not significantly affect the concentrations of triglyceride and total cholesterol in the serum, the activities of fatty acid synthase and acetyl-CoA carboxylase in the liver, the total antioxidant capacity, glutathione peroxidase activity and malondialdehyde content in the serum and liver. Besides, microbial analysis revealed that supplementation of C. butyricum and B. subtilis increased (p<0.05) the abundance of Firmicutes such as CHKCI001 and Faecalibacterium, decreased (p<0.05) the abundance of Bacteroidota such as Bacteroides and Alistipes. Spearman correlation analysis confirmed that the above cecal microbiota were closely related to the growth performance of broilers (p<0.05). In addition, simultaneous supplementation of C. butyricum and B. subtilis significant affected (p<0.05) 33 different functional pathways such as lipid metabolism and carbohydrate metabolism. This explains the phenomenon of increased growth performance and liver NADP-ME activity in the probiotics group. Conclusion: The compatibility of C. butyricum and B. subtilis could improve the growth of broilers during the starter phase by changing the cecal microflora.

Effects of Dietary Supplementation of Coffee Meal on Intestinal Enzyme Activity, Biochemical Profiles and Microbial Population in Broiler Chicks (커피박 첨가가 육계의 소장 효소 활성도, 생화학 지표 및 장내 미생물 균총에 미치는 영향)

  • Ko, Young-Hyun;Yun, Seo-Hyun;Song, Min-Hae;Kim, Se-Yun;Kim, Jong-Sun;Kim, Hyoun-Wook;Jang, In-Surk
    • Korean Journal of Poultry Science
    • /
    • v.41 no.2
    • /
    • pp.105-113
    • /
    • 2014
  • The current study was performed to investigate the effects of dietary supplementation of dried coffee meal (CM) on growth performance, intestinal and blood biochemical index, intestinal enzymes, and cecal microbial populations. A total of 162, 3-day-old male broiler chicks were randomly allocated into three dietary groups: control group (CON), basal diet added with 0.5% CM (CM I), and basal diet added with 1.0% CM (CM II). Dietary supplementation of CM did not change bird performance and the relative weight of intestinal mucosal tissues. The birds fed the diet supplemented with CM (0.5 and 1.0%) significantly decreased mucosal glucose concentration (P<0.05) without affecting blood glucose level compared with those fed control diet. The level of blood aspartate aminotransferase (AST) significantly increased in CM II group (P<0.05) without affecting ${\gamma}$-glutamyl transpeptidase (${\gamma}$-GTP) compared with that in the CON group. The specific activity of intestinal maltase, leucine aminopeptidase (LAP) and alkaline phosphatase (ALP) were not affected by dietary supplementation of CM, whereas sucrase activity in birds fed the diet supplemented with CM was decreased (P<0.05) compared to that in the control birds. The colony forming units (CFU) of E. coli in the cecum of CM-fed birds was significantly decreased (P<0.05) compared with that of control birds without changing the CFU of Lactobacillus. In conclusion, dietary supplementation of lower level of CM (0.5%) can be used as a beneficial feed resource without liver toxicity in broiler chicks.