• Title/Summary/Keyword: Microbial Treatment

Search Result 1,639, Processing Time 0.029 seconds

Isolation of Microorganisms and Development of Microbial Augmentation for Treatment of Paper Mill Wastewater (제지폐수 처리용 미생물의 분리 및 복합 미생물제제의 개발)

  • Kang, Dae-Ook;Suh, Hyun-Hyo
    • Journal of Life Science
    • /
    • v.21 no.4
    • /
    • pp.554-560
    • /
    • 2011
  • This study was performed to investigate the effects of microbial augmentation on the biological treatment of paper mill wastewater. Three bacteria (KN11, KN13, KN27) capable of degrading aromatic compounds and a bacterial strain (GT21) producing an extracellular cellulase were isolated from soil and wastewater by selective enrichment culture. Through morphological, physiological, and biochemical taxonomies, isolated strains of KN11, KN13, KN27, and GT21 were identified as Acinetobacter sp., Neisseria sp., Bacillus sp., and Pseudomonas sp. and named Acinetobacter sp. KN11, Neisseria sp. KN13, Bacillus sp. KN27, and Pseudomonas sp. GT21, respectively. For analysis of non-biodegradable and chemical oxygen demand (COD)-increasing matter in a paper mill wastewater, we utilized GC/MS to detect aromatic compounds and their derivatives containing several substituted functional groups. The microbial augmentation, J30 formulated with the mixture of bacteria including Acinetobacter sp. KN11, Neisseria sp. KN13, Bacillus sp. KN27, and Pseudomonas sp. GT21, was used for the treatment of paper mill wastewater. The optimum temperature and pH for COD removal of the microbial augmentation, J30, were $30^{\circ}C$ and 7.5, respectively. For evaluation of the industrial applicability of the microbial augmentation, J30 in the pilot test, treatment efficiency was examined using paper mill wastewater. The microbial augmentation, J30, showed a COD removal rate of 87%. On the basis of the above results, we designed the wastewater treatment process of the activated sludge system.

A Study on the Treatment of Paper Mill Wastewater with the Addition of High Thermal Microbial Inoculants (고온성 종균제를 이용한 제지폐수 처리)

  • 이성호;임택준;조준형
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.2
    • /
    • pp.54-60
    • /
    • 2002
  • The Wastewater of toilet paper mill recycling recovered milk carton was used as a raw material for this study. According to the actual mill conditions, hydraulic retention time was adjusted to 12 hours and F/M (Food/Micro-organism) ratio was adjusted to 0.23. Temperature of aeration basin was varied from 2$0^{\circ}C$ to 5$0^{\circ}C$. The change of Micro-organisms and removal efficiency of pollutant were investigated at the varied temperature of basin. Aeration basin using high thermal microbial inoculants showed more removal efficiency of SS, COD than aeration basin using conventional microbial inoculants at high temperature. Floc consolidation of aeration basin using high thermal microbial inoculants added sludge was better than that of sludge from aeration basin using conventional microbial inoculants.

Effect of Aqueous Chlorine Dioxide Treatment on the Microbial Growth and Quality of Chicken Legs during Storage

  • Hong, Yun-Hee;Ku, Gyeong-Ju;Kim, Min-Ki;Song, Kyung-Bin
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.1
    • /
    • pp.45-50
    • /
    • 2008
  • The effect of aqueous chlorine dioxide ($ClO_2$) treatment on microbial growth and quality of chicken leg during storage was examined. Chicken leg samples were treated with 0, 50, and 100 ppm of $ClO_2$ solution and stored at $4^{\circ}C$. Aqueous $ClO_2$ treatment significantly decreased the populations of total aerobic bacteria, yeast and mold, and coliforms in chicken leg. One hundred ppm $ClO_2$ treatment reduced the initial populations of total aerobic bacteria, yeast and mold, and coliforms by 0.93, 1.15, and 0.94 log CFU/g, respectively. The pH and volatile basic nitrogen values in the chicken leg decreased with increasing aqueous $ClO_2$ concentration, while concentrations thiobarbituric acid reactive substances (TBARS) increased during storage regardless of aqueous $ClO_2$ concentration. Sensory evaluation results revealed that the quality of the chicken leg treated with aqueous $ClO_2$ during storage was better than that of the control. These results indicate that aqueous $ClO_2$ treatment can be useful for improving the microbial safety of chicken leg during storage.

Effects of Long-Term Fertilization on Microbial Diversity in Upland Soils Estimated by Biolog Ecoplate and DGGE

  • An, Nan-Hee;Lee, Sang-Min;Cho, Jung-Rai;Lee, Byung-Mo;Shin, Jae-Hun;Ok, Jung-Hun;Kim, Seok-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.451-456
    • /
    • 2014
  • Organic amendment practices can influence diversity and activities of soil microorganisms. There is a need to investigate this impact compared with other types of materials. This study was carried out to evaluate the long term effects of chemical and organic fertilizer on soil microbial community in upland field. During the last 11 years green manure, rice straw compost, rapeseed cake, pig mature compost, NPK, and NPK + pig mature compost were treated in upland soil. Organic fertilizer treatment found with high bacterial colony forming units (CFUs) as compared to chemical and without fertilizer treatment. There was no significant difference in the actinomycetes and fungal population. The average well color development (AWCD) value was the highest in green manure and, the lowest in without fertilizer treatment. Analyses based on the denaturing gradient gel electrophoresis (DGGE) profile showed that rice straw compost and pig mature compost had a similar banding pattern while rapeseed cake, NPK, NPK + pig mature compost and without fertilizer treatment were clustered in another cluster and clearly distinguished from green manure treatment. Bacterial diversity can be highly increased by the application of organic fertilizer while chemical fertilizer had less impact. It can be concluded that green manure had a beneficial impact on soil microbial flora, while, the use of chemical fertilizer could affect the soil bacterial communities adversely.

Treatment Characteristics and Application of DAF Process for Effective Solid Separation in BNR Municipal Wastewater Treatment System (BNR 하수처리시스템에서 효과적 고형물 분리를 위한 DAF 공정의 적용과 처리특성)

  • Kwak, Dong-Heui;Rhu, Dae-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.3
    • /
    • pp.267-276
    • /
    • 2010
  • Many plants have been improved to adapt the target of the biological treatment processes changed from organics to nutrients since the water quality criteria of effluent was reinforced and included T-N and T-P for the municipal wastewater treatment plant. To meet the criteria of T-N and T-P, the conventional biological reactor such as aeration tank in activated sludge system is changed to the BNR (biological nutrient removal) processes, which are typically divided into three units as anaerobic, anoxic and oxic tank. Therefore, the solid separation process should be redesigned to fit the BNR processes in case of the application of the DAF (dissolved air flotation) process as an alternatives because the solid-liquid separation characteristics of microbial flocs produced in the BNR processes are also different from that of activated sludge system as well. The results of this study revealed that the microbial floc of the anaerobic tank was the hardest to be separated among the three steps of the unit tanks for the BNR processes. On the contrary, the oxic tank was best for the removal efficiency of nutrients as well as suspended solid. In addition, the removal efficiency of nutrients was much improved under the chemical coagulation treatment though coagulation was not indispensable with a respect to the solid separation. On the other hand, in spited that the separation time for the microbial floc from the BNR processes were similar to the typical particles like clay flocs, over $2.32{\times}10^3$ ppm of air volume concentration was required to keep back the break-up of the bubble-floc agglomerates.

Two-stage Bioprocesses Combining Dark H2 Fermentation: Organic Waste Treatment and Bioenergy Production (혐기성 수소발효를 결합한 생물학적 2단공정의 유기성폐자원 처리 및 바이오에너지 생산)

  • LEE, CHAE-YOUNG;YOO, KYU-SEON;HAN, SUN-KEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.3
    • /
    • pp.247-259
    • /
    • 2015
  • This study was performed to investigate the application of dark $H_2$ fermentation to two-stage bioprocesses for organic waste treatment and energy production. We reviewed information about the two-stage bioprocesses combining dark $H_2$ fermentation with $CH_4$ fermentation, photo $H_2$ fermentation, microbial fuel cells (MFCs), or microbial electrolysis cells (MECs) by using academic information databases and university libraries. Dark fermentative bacteria use organic waste as the sole source of electrons and energy, converting it into $H_2$. The reactions related to dark $H_2$ fermentation are rapid and do not require sunlight, making them useful for treating organic waste. However, the degradation is not complete and organic acids remain. Thus, dark $H_2$ fermentation should be combined with a post-treatment process, such as $CH_4$ fermentation, photo $H_2$ fermentation, MFCs, or MECs. So far, dark $H_2$ fermentation followed by $CH_4$ fermentation is a promising two-stage bioprocess among them. However, if the problems of manufacturing expenses, operational cost, scale-up, and practical applications will be solved, the two-stage bioprocesses combining dark $H_2$ fermentation with photo $H_2$ fermentation, MFCs, or MECs have also infinite potential in organic waste treatment and energy production. This paper demonstrated the feasibility of two-stage bioprocesses combining dark $H_2$ fermentation as a novel system for organic waste treatment and energy production.

Influence of Ethanol Addition on Sugars and Microbial Growth of Rehmannia glutinosa Rhizome with Aging Treatment (숙성지황의 당류와 미생물에 에탄올 첨가가 미치는 영향)

  • Jang, Gwi Yeong;Choi, Je Hun;Kim, Hyung Don;Seo, Kyung Hye;Lee, Seung Eun;Jee, Yun Jeong;Kang, Min Hye;Kim, Dong Hwi;Choi, Su Ji
    • The Korean Journal of Food And Nutrition
    • /
    • v.33 no.3
    • /
    • pp.251-256
    • /
    • 2020
  • The aging treatment was applied to Rehmannia glutinosa rhizome (RGR) to improve the digestibility by the enzymatic hydrolysis of undigestible sugars. However, RGR spoils easily during the aging treatment. Thus, the purpose of this study was to investigate the influence of ethanol addition as preservatives on sugars and microbial growth of aged RGR. The RGR was treated with the addition of ethanol (0~10%) at 55℃ for eight days. Reducing, free sugars, and total bacterial counts of RGR with ethanol concentrations were analyzed during the aging periods. The aged RGR with 0-2% ethanol appeared spoiled in appearance, and total bacterial counts of these samples increased from 1.1×105 to 2.2×107 CFU and then decreased again. When treated with 4~10% ethanol, the total bacterial counts of aged RGR decreased by more than 99.9% at eight days. In all samples, reducing and digestible sugars increased, and stachyose decreased by the aging treatment. Sucrose content was highest in the 6% ethanol sample (18.2% at six days). These results indicate that the ethanol addition can be applied to the aging treatment of the RGR for improving qualities (sweetness, digestibility, and microbial growth), and can be considered for the stable production of high quality aged RGR.

Comparative Effect of ${\gamma}$-Irradiation and Ozone Treatment for the Improvement of Hygienic Quality of Dried-Angelica Keiskei Koidz Powder (신선초 분말의 위생화를 위한 오존처리와 감미선 조사와의 비교 효과)

  • 변명우;육홍선;김정옥;김종군;이현자
    • Journal of Food Hygiene and Safety
    • /
    • v.12 no.2
    • /
    • pp.111-116
    • /
    • 1997
  • For the purpose of improving hygienic quality of dried-Angelica Keiskei Koidz powder, the effect of ozone treatment and gamma irradiation on the microbial decontamination and physicochemical properties were investigated. Gamma irradiation at 5 to 7.5 kGy resulted in sterilizing total aerobic bacteria, molds and coliforms below detective levels, while ozone treatment for 8 hours up to 18 ppm did not sufficiently eliminate the total aerobic bacteria of the sample. The physicochemical properties of the sample were not changed by gamma irradiation up to 7.5 kGy, whereas, ozone treatment caused remarkable changes in pH, TBA value, chlorophyll, carotenoid and fatty acid compositions. Therefore, this investigation demonstrated conclusively that gamma irradiation was more effective than ozone treatment for decontaminating and sterilizing the dried-Angelica Keiskei Koidz powder, with minimal effect on the physicochemical properties analyzed.

  • PDF

Effects of Ozone Treatment and Gamma Irradiation on the Microbial Decontamination and Physicochemical Properties of Red Pepper Powder (고춧가루의 오염미생물 제거 및 이화확적 특성에 관한 오존처리와 감마선 조사의 영향)

  • 이성희;이현자;변명우
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.3
    • /
    • pp.465-467
    • /
    • 1997
  • The comparative effects of ozone treatment and gamma irradiation on the sterilization, physicochemical properties and sensory quality of red pepper powder were investigated. As for the sterilization of microorganisms, 7.5~10 KGy of gamma irradiation completely eliminated the coliforms, yeast and molds, and total aerobic bacteria. On the other hand, ozone treatment failed to eliminate the highly contaminated microbial load, especially total aerobic bacteria. The physicochemical properties including capsaicin, capsanthin, browning, fatty acid compositions and sensory quality were not significantly changed by gamma irradiation up to 10 kGy, whereas ozone treatment caused significant changes in fatty acid compositions and destruction of natural pigments (p<0.05). The above results led us to conclude that gamma irradiation was more effective than ozone treatment for the sterilization and maintenance of physicochemical and sensory qualities of red pepper powders.

  • PDF

Isolation of Microorganisms and Development of Microbial Augmentation for Treatment of Industrial Wastewater containing Ammonium Nitrogen (암모니아성 질소함유 산업폐수처리를 위한 미생물의 분리 및 복합미생물제제의 개발)

  • Lee, Myoung-Eun;Mun, Seo-Jin;Kwon, Do-Hyuck;Suh, Hyun-Hyo
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.129-136
    • /
    • 2020
  • For effective treatment of wastewater containing ammonium nitrogen (NH4-N), AT2, AT9, and AT12 strains, having high total organic carbon (TOC) removal capability, and FN47, possessing excellent ammonia nitrogen removal capability present in the activated sludge in the aeration tank of food wastewater treatment plants, were isolated and identified. The cells of these isolated strains were used for microbial augmentation with FIW-1 in the defatted rice bran as a medium to treat industrial wastewater. The investigation of the cultural characteristics of these isolated strains in the aeration tank showed that the affinities for substrate of the isolated strains were extremely high, of which AT12 (Alcaligenes sp. AT12) was the highest among the isolated strains. Ammonium nitrogen removal efficiency in the food wastewater was 71% in the isolated strain FN47 (Microbacterium sp. FN47) treatment group. When only activated sludge was added in the lab scale pilot using food wastewater during continuous culture experiment, the TOC removal efficiency was 63%. Meanwhile, the removal efficiency of 92% was obtained when the microbial augmentation FIW-1 for wastewater treatment was applied. In addition, the chemical oxygen demand (COD) level from the effluent wherein microbial augmentation FIW-1 was input for the initial three days in the wastewater treatment site experiment showed a treatment rate of about 43%, which was increased to 62% after an elapse of 5 days.