• Title/Summary/Keyword: Microbial Pigment

Search Result 52, Processing Time 0.021 seconds

Isolation and Identification of Cyanobacteria of the Cultural Heritages in the Gwanschoksa, Nonsan City in Korea (논산 관촉사 석조문화재에 분포하는 남세균의 분리 및 동정에 관한 연구)

  • Oh, In-Hye
    • The Journal of Natural Sciences
    • /
    • v.19 no.1
    • /
    • pp.27-35
    • /
    • 2008
  • The importance of microbial activity in the alteration and deterioration of stone and concrete walls has been frequently neglected. Organisms present on stone monuments can include photolithoautotrophs, such as algae, cyanobacteria, mosses, and higher plants. Because of their ability to survive repeated drying and rehydration cycles and high UV levels, the cyanobacteria are particularly important on exposed surfaces. The cyanobactria distributed on the surface of the stone cultural heritages in Gwanschoksa, Nonsan city were investigated. Chlorococcus sp. Aanabaena sp. Gloeocapsa sp Lyngbya sp. Stigomena sp. Synechocystis sp were identified. Haplaosiphon fontinalis and Stigonema turfaceum, which were not recoded is Korea, were also identified. Cells often have thick pigmented sheath in dry, sun-exposed environment and shorter filament, which can be different than that in aquatic systems. Special attention should be paid to production of an adequate DNA database in order to accelerate the rate at which information on the species present in biofilms become available.

  • PDF

Poly-$\beta$-Hydroxybutyrate Produced by Pink-Pigmented Facultative Methylotrophic Bacterium from Methanol (분홍색 통성 메탄올 자화세균이 생산하는 Poly-$\beta$-Hydroxybutyrate)

  • 송미연;이재호;이용현
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.3
    • /
    • pp.273-279
    • /
    • 1990
  • For poly- $\beta$ -hydroxybutyrate (PHB) production, a pink-pigmented facultative methylotrophic bacterium (PPFM) P-10 was newly isolated from soils through methanol-enrichment culture. The optimal medium composition for cell growth was 1.0% (vlv) of methanol as carbon source and l.Og/l of ,TEX>$NH_4Cl$, equivalent to C/N ratio of 13.2 at pH 7.0 and $30^{\circ}C$. To investigate the optimal condition for YHB accumulation, two-stage culture technique was adopted; first stage for cell growth and second stage for accumulation of PHB providing unbalanced growth conditions. The optimal PHB accumulation was 1.0% (vIv) of methanol and 0.26gll of $NH_4Cl$, C/N of 50.8 at pH 6.0. To overcome methanol inhibition on cell growth, intermittent feeding fed-batch culture technique was employed, and the cell concentration as high as 14gll with 40% of PHB was achieved. The purified PHB was identified using IR and $1^H NMR$ as homopolymer of 8hydroxybutyric acid. The absorption spectrum of extracted pink colored microbial pigment was alsa investigated.

  • PDF

Microbial Production of Carotenoids: Biological Functions and Commercial Applications (미생물에 의한 카로티노이드 생산; 생물학적 기능성 및 상업적 적용)

  • Seo, Yong Bae;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.27 no.6
    • /
    • pp.726-737
    • /
    • 2017
  • Carotenoids are isoprenoids with a long polyene chain containing 3 to 15 conjugated double bonds, which determines their absorption spectrum. They typically consist of a $C_{40}$ hydrocarbon backbone often modified by different oxygen-containing functional groups, to yield cyclic or acyclic xanthophylls. Much work has also been focused on the identification, production, and utilization of natural sources of carotenoid (plants, microorganisms and crustacean by-products) as an alternative to the synthetic pigment which currently covers most of the world markets. Nevertheless, only a few carotenoids (${\beta}-carotene$, lycopene, astaxanthin, canthaxanthin, and lutein) can be produced commercially by fermentation or isolation from the small number of abundant natural sources. The market and demand for carotenoids is anticipated to increase dramatically with the discovery that carotenoids exhibit significant anti-carcinogenic activities and play an important role in the prevention of chronic diseases. The increasing importance of carotenoids in the feed, nutraceutical food and pharmaceutical markets has renewed by efforts to find ways of producing additional carotenoid structures in useful quantities. Because microorganisms and plants synthesize hundreds of different complex chemical carotenoid structures and a number of carotenoid biosynthetic pathways have been elucidated on a molecular level, metabolic and genetic engineering of microorganisms can provide a means towards economic production of carotenoid structures that are otherwise inaccessible. The aim of this article is to review our current understanding of carotenoid formation, to explain the perceived benefits of carotenoid in the diet and review the efforts that have been made to increase carotenoid in certain microorganisms.

Study of 2,3,5-Triphenyltetrazolium Chloride for Detection of Pathogenic Microorganisms (2,3,5-Triphenyltetrazolium Chloride를 이용한 병원성 미생물 확인시험에 관한 연구)

  • Kang, Jung Wook;Bae, Jun Tae;Yeon, Jae Young;Kim, Young Ho;Kim, Jin Hwa;Lee, Geun Soo;Pyo, Hyeong Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.3
    • /
    • pp.307-311
    • /
    • 2014
  • 2,3,5-Triphenyltetrazolium chloride (TTC) is used as a redox indicator in culture media. It is colorless in the oxidized form and is reduced to formazan, an insoluble pigment, by dehydrogenases in actively growing microbial cells. The aim of this study was to assess by microbial test of the pathogenic microorganisms using TTC reduction. The pathogenic microorganisms were reduced in medium by dehydrogenase to produce insoluble red formazan. We observed that the optimization method of TTC allowed more than 12 h incubation in 0.04% concentration. Also, the growth of microorganisms with media was increased formazan production. We confirmed that microorganisms were quickly observed to grow colonies cultured red color without affecting the growth of microorganisms. It is suggested that the microbial test using TTC can provide better and quicker test method in cosmetics development.

Effect of Tyrosinase Inhibitors on the Melanogenesis of Gold Fish(Jet Black Color) (Tyrosinase 저해제가 검은툭눈붕어의 멜라닌 생성에 미치는 영향)

  • Han, Dae-Seok;Jung, Sung-Won;Kim, Seok-Joong;Kim, Sang-Hee;Ahn, Byung-Hak
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.1089-1094
    • /
    • 1996
  • The in vivo effect of tyrosinase inhibitors in the melanogenesis of gold fish (jet black color) was evaluated by measuring surface color and observing melanin pigment. The fish was firstly cultivated in 0.9% NaCl solution for 1 week to induce melanogenesis, and then, it was transferred to each treatment group containing tyrosinase inhibitor. The fish was grouped into control. food additive group (addition of 5 mM glutathione, 5 mM cysteine, and 1 mM benzoic acid), microbial inhibitor group (addition of culture broth of Aspergillus oryzae in shiitake and glucose medium), and plant extract group (addition of the mixed extracts of green tea, beet, red chicory, and nameko). After 6 days, the fish was anesthetized by electric shock, and color of pectoral region, lateral region, and dorsal fin was measured. Hunter's L and b values of treated group were generally higher than those of control group, indicating that the tyrosinase inhibitors could inhibit the melanogenesis of the fish. Effect of plant extract was apparent, though relatively weak, not because it did not work in vivo, but because a sufficient amount of extract could not be added to fish globes. If a large amount of extract was added, fish gradually died due to a microbial contamination. Microscopic observation of melanin in lateral scale and dorsal fin showed that in the treated groups with tyrosinase inhibitors, the number of melanophore per unit area and the size of one melanophore decreased.

  • PDF

Substitution of Pro206 and Ser86 Residues in the Retinal Binding Pocket of Anabaena Sensory Rhodopsin is Not Sufficient for Proton Pumping Function

  • Choi, Ah-Reum;Kim, So-Young;Yoon, Sa-Ryong;Bae, Ki-Ho;Jung, Kwang-Hwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.138-145
    • /
    • 2007
  • Anabaena sensory rhodopsin is a seven transmembrane protein that uses all-trans/13-cis retinal as a chromophore. About 22 residues in the retinal-binding pocket of microbial rhodopsins are conserved and important to control the quality of absorbing light and the function of ion transport or sensory transduction. The absorption maximum is 550 nm in the presence of all-trans retinal at dark. Here, we mutated Pro206 to Glu or Asp, of which the residue is conserved as Asp among all other microbial rhodopsins, and the absorption maximum and pKa of the proton acceptor group were measured by absorption spectroscopy at various pHs. Anabaena rhodopsin was expressed best in Escherichia coli in the absence of extra leader sequence when exogenous all-trans retinal was added. The wild-type Anabaena rhodopsin showed small absorption maximum changes between pH4 and 11. In addition, Pro206Asp showed 46 nm blue-shift at pH7.0. Pro206Glu or Asp may change the contribution to the electron distribution of the retinal that is involved in the major role of color tuning for this pigment. The critical residue Ser86 (Asp 96 position in bacteriorhodopsin: proton donor) for the pumping activity was replaced with Asp, but it did not change the proton pumping activity of Anabaena rhodopsin.

Effects of Electron Beam Irradiation on Physicochemical Qualities of Red Pepper Powder (Electron Beam 조사가 고추분말의 이화학적 품질에 미치는 영향)

  • Lee, Jung-Eun;Lee, Moo-Ha;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.271-276
    • /
    • 2000
  • Electron beam (EB) irradiation was compared with gamma ray (GR) in terms of their effects on physicochemical qualities of microbial-decontaminated red pepper powder. The pH and soluble solid of the samples were relatively constant when exposed to EB and GR up to 15 kGy, which also did not induce significant chances in total and reducing sugars. The water soluble pigment and capsanthin content of red pepper powder showed a decreasing tendency as the irradiation dose increased. However, the pungent components, capsaicin and dihydrocapsaicin were shown resistant to irradiation doses applied. Based upon the results, EB was similar to GR in its effect on the physicochemical attributes of the samples, and the irradiation doses required for microbial control were not detrimental to the quality attributes of red pepper powder.

  • PDF

Non-destructive identification of fake eggs using fluorescence spectral analysis and hyperspectral imaging

  • Geonwoo, Kim;Ritu, Joshi;Rahul, Joshi;Moon S., Kim;Insuck, Baek;Juntae, Kim;Eun-Sung, Park;Hoonsoo, Lee;Changyeun, Mo;Byoung-Kwan, Cho
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.495-510
    • /
    • 2022
  • In this study, fluorescence hyperspectral imaging (FHSI) was used for the rapid, non-destructive detection of fake, manmade eggs from real eggs. To identify fake eggs, protoporphyrin IX (PpIX)-a natural pigment present in real eggshells-was utilized as the main indicator due to its strong fluorescence emission effect. The fluorescence images of real and fake eggs were acquired using a line-scan-based FHSI system, and their fluorescence features were analyzed based on spectroscopic techniques. To improve the detection performance and accuracy, an optimal waveband combination was investigated with analysis of variance (ANOVA), and its fluorescence ratio images (588/645 nm) were created for visualization of the real eggs between two different egg groups. In addition, real and fake eggs were scanned using a one-waveband (645 nm) handheld fluorescence imager that can perform real-time scanning for on-site applications. Then, the results of the two methods were compared with one another. The outcome clearly shows that the newly developed FHSI system and the fluorescence handheld imager were both able to distinguish real eggs from fake eggs. Consequently, FHSI showed a better performance (clearer images) compared to the fluorescence handheld imager, and the outcome provided valuable information about the feasibility of using FHSI imaging with ANOVA for the discrimination of real and fake eggs.

Characterization of Molecular Composition of Bacterial Melanin Isolated from Streptomyces glaucescens Using Ultra-High-Resolution FT-ICR Mass Spectrometry

  • Choi, Mira;Choi, A Young;Ahn, Soo-Yeon;Choi, Kwon-Young;Jang, Kyoung-Soon
    • Mass Spectrometry Letters
    • /
    • v.9 no.3
    • /
    • pp.81-85
    • /
    • 2018
  • In this study, the chemical composition of bacterial melanin isolated from the Streptomyces glaucescens strain was elucidated by ultra-high-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Ultra-high-resolution mass profiles of the microbial melanin product were acquired using a 15 Tesla FT-ICR mass spectrometer in positive and negative ion modes via electrospray ionization to obtain more complete descriptions of the molecular compositions of melanin-derived organic constituents. A mass resolving power of 500,000 (at m/z 400) was achieved for all spectra while collecting 400 scans per sample with a 4 M transient. The results of this analysis revealed that the melanin pigment isolated from S. glaucescens predominantly exhibits CHON and CHO species, which belong to the proteins class of compounds, with the mean C/O and C/N ratios of 4.3 and 13.1, thus suggesting that the melanin could be eumelanin. This analytical approach could be utilized to investigate the molecular compositions of a variety of natural or synthetic melanins. The compositional features of melanins are important for understanding their formation mechanisms and physico-chemical properties.

Effects of Ionizing Energy and Ozone Treatments on the Microbial Decontamination and Physicochemical Properties of Aloe Powders and Bee Pollen

  • Yook, Hong-Sun;Chung, Young-Jin;Kim, Jung-Ok;Kwon, Oh-Jin;Kim, Sung;Byun, Myung-Woo
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.2
    • /
    • pp.89-95
    • /
    • 1997
  • The comparative effects of gamma irradiation an ozone treatment on the microbiological and physicochemical qualities were investigated for the improvement of hygienic quality of aloe powder and bee pollen. Gamma irradiation at 7.5~10kGy could reduce total aerobic bacteria, molds and coliforms below detection levels, but ozone treatment up to 18 ppm for 8hr was not sufficient to eliminate the microorganisms from aloe powder and bee pollen. The physicochemical properties such as fatty acid an amino acid compositions, mineral content, TBA value, barbaloin and pigment contents were not significantly changed by gamma irradiation, whereas ozone treatment caused significant changes in fatty acid composition, lipid oxidation and destruction of barbaloin and natural pigments.

  • PDF