Substitution of Pro206 and Ser86 Residues in the Retinal Binding Pocket of Anabaena Sensory Rhodopsin is Not Sufficient for Proton Pumping Function

  • Choi, Ah-Reum (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Kim, So-Young (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Yoon, Sa-Ryong (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Bae, Ki-Ho (Department of Life Science, Yonsei University) ;
  • Jung, Kwang-Hwang (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
  • Published : 2007.01.31

Abstract

Anabaena sensory rhodopsin is a seven transmembrane protein that uses all-trans/13-cis retinal as a chromophore. About 22 residues in the retinal-binding pocket of microbial rhodopsins are conserved and important to control the quality of absorbing light and the function of ion transport or sensory transduction. The absorption maximum is 550 nm in the presence of all-trans retinal at dark. Here, we mutated Pro206 to Glu or Asp, of which the residue is conserved as Asp among all other microbial rhodopsins, and the absorption maximum and pKa of the proton acceptor group were measured by absorption spectroscopy at various pHs. Anabaena rhodopsin was expressed best in Escherichia coli in the absence of extra leader sequence when exogenous all-trans retinal was added. The wild-type Anabaena rhodopsin showed small absorption maximum changes between pH4 and 11. In addition, Pro206Asp showed 46 nm blue-shift at pH7.0. Pro206Glu or Asp may change the contribution to the electron distribution of the retinal that is involved in the major role of color tuning for this pigment. The critical residue Ser86 (Asp 96 position in bacteriorhodopsin: proton donor) for the pumping activity was replaced with Asp, but it did not change the proton pumping activity of Anabaena rhodopsin.

Keywords

References

  1. Balashov, S. P., E. S. Imasheva, V. A. Boichenko, J. Anton, J. M. Wang, and J. K. Lanyi. 2005. Xanthorhodopsin: A proton pump with a light-harvesting carotenoid antenna. Science 309: 2061-2064 https://doi.org/10.1126/science.1118046
  2. Beja, O., E. N. Spudich, J. L. Spudich, M. Leclerc, and E. F. DeLong. 2001. Proteorhodopsin phototrophy in the ocean. Nature 411: 786-789 https://doi.org/10.1038/35081051
  3. Beja, O., L. Aravind, E. V. Koonin, M. T. Suzuki, A. Hadd, L. P. Nguyen, S. B. Jovanovich, C. M. Gates, R. A. Feldman, J. L. Spudich, E. N. Spudich, and E. F. DeLong. 2000. Bacterial rhodopsin: Evidence for a new type of phototrophy in the sea. Science 289: 1902-1906 https://doi.org/10.1126/science.289.5486.1902
  4. Bergo, V. B., M. Ntefidou, V. D. Trivedi, J. J. Amsden, J. M. Kralj, K. J. Rothschild, and J. L. Spudich. 2006. Conformational changes in the photocycle of Anabaena sensory rhodopsin: Absence of the Schiff base counterion protonation signal. J. Biol. Chem. 281: 15208-15214 https://doi.org/10.1074/jbc.M600033200
  5. Brown, L. S. and K. H. Jung. 2006. Bacteriorhodopsin-like proteins of eubacteria and fungi: The extent of conservation of the haloarchaeal proton-pumping mechanism. Photochem. Photobiol. Sci. 5: 538-546 https://doi.org/10.1039/b514537f
  6. Furutani, Y., A. Kawanabe, K. H. Jung, and H. Kandori. 2005. FTIR spectroscopy of the all-trans form of Anabaena sensory rhodopsin at 77 K: Hydrogen bond of a water between the Schiff base and Asp75. Biochemistry 44: 12287-12296 https://doi.org/10.1021/bi050841o
  7. Gartner, W. and A. Losi. 2003. Crossing the borders: Archaeal rhodopsins go bacterial. Trends Microbiol. 11: 405-407 https://doi.org/10.1016/S0966-842X(03)00203-8
  8. Gordeliy, V. I., J. Labahn, R. Moukhametzianov, R. Efremov, J. Granzin, R. Schlesinger, G. Buldt, T. Savopol, A. J. Scheidig, J. P. Klare, and M. Engelhard. 2002. Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature 419: 484-487 https://doi.org/10.1038/nature01109
  9. Heo, Y.-J., K. S. Ko, J.-H. Song, and Y.-H. Cho. 2005. Profiling pyocins and competitive growth advantages of various Pseudomonas aeruginosa strains. J. Microbiol. Biotechnol. 15: 1368-1376
  10. Hoff, W. D., K. H. Jung, and J. L. Spudich. 1997. Molecular mechanism of photosignaling by archaeal sensory rhodopsins. Annu. Rev. Biophys. Biomol. Struct. 26: 223-258 https://doi.org/10.1146/annurev.biophys.26.1.223
  11. Imasheva, E. S., S. P. Balashov, J. M. Wang, and J. K. Lanyi. 2006. pH Dependent transition in xanthorhodopsin. Photochem. Photobiol. (In press)
  12. Jung, K. H., V. D. Trivedi, and J. L. Spudich. 2003. Demonstration of a sensory rhodopsin in eubacteria. Mol. Microbiol. 47: 1513-1522 https://doi.org/10.1046/j.1365-2958.2003.03395.x
  13. Jung, K. H. and J. L. Spudich. 1998. Suppressor mutation analysis of the sensory rhodopsin I-transducer complex: Insights into the color-sensing mechanism. J. Bacteriol. 180: 2033-2042
  14. Jung, K. H. and J. L. Spudich. 2004. Microbial rhodopsins: Transport and sensory proteins throughout the three domains of life. Section II Photobiology. In Horspool, W. M. and Lenci, F. (eds.). CRC Handbook of Organic Photochemistry and Photobiology, 2nd Ed. Vol 3:124-1-11
  15. Kim, J.-D. and C.-G. Lee. 2006. Diversity of heterocystous filamentous cyanobacteria (blue-green algae) from rice paddy fields and their differential susceptibility to ten fungicides used in Korea. J. Microbiol. Biotechnol. 16: 240-246
  16. Kim, J.-D., W.-S. Lee, B. Kim, and C.-G. Lee. 2006. Proteomic analysis of protein expression patterns associated with astaxanthin accumulation by green alga Haematococcus pluvialis (Chlorophyceae) under high light stress. J. Microbiol. Biotechnol. 16: 1222-1228
  17. Luecke, H., B. Schobert, J. K. Lanyi, E. N. Spudich, and J. L. Spudich. 2001. Crystal structure of sensory rhodopsin II at 2.4 angstroms: Insights into color tuning and transducer interaction. Science 293: 1499-1503 https://doi.org/10.1126/science.1062977
  18. Oesterhelt, D. and W. Stoeckenius. 1973. Functions of a new photoreceptor membrane. Proc. Natl. Acad. Sci. USA 70: 2853
  19. Oesterhelt, D. 1998. The structure and mechanism of the family of retinal proteins from halophilic archaea. Curr. Opin. Struct. Biol. 8: 489-500 https://doi.org/10.1016/S0959-440X(98)80128-0
  20. Seo, H. S. and S. H. Bhoo. 2006. Photochromism of phytochromes and Cph1 requires critical amino acids and secondary structure in the N-terminal domain. J. Microbiol. Biotechnol. 16: 1441-1447
  21. Shi, L., S. R. Yoon, A. G. Jr. Bezerra, K. H. Jung, and L. S. Brown. 2006. Cytoplasmic shuttling of protons in Anabaena sensory rhodopsin: Implications for signaling mechanism. J. Mol. Biol. 358: 686-700 https://doi.org/10.1016/j.jmb.2006.02.036
  22. Shimono, K., M. Iwamoto, M. Sumi, and N. Kamo. 1997. Functional expression of pharaonis phoborhodopsin in Escherichia coli. FEBS Lett. 420: 54-56 https://doi.org/10.1016/S0014-5793(97)01487-7
  23. Sineshchekov, O. A., V. D. Trivedi, J. Sasaki, and J. L. Spudich. 2005. Photochromicity of Anabaena sensory rhodopsin, an atypical microbial receptor with a cis-retinal light-adapted form. J. Biol. Chem. 280: 14663-14668 https://doi.org/10.1074/jbc.M501416200
  24. Spudich, J. L. and H. Leucke. 2002. Sensory rhodopsin II: Functional insights from structure. Curr. Opin. Struct. Biol. 12: 540-546 https://doi.org/10.1016/S0959-440X(02)00359-7
  25. Spudich, J. L. and K. H. Jung. 2005. Microbial rhodopsins: Phylogenetic and functional diversity, pp. 1-24. In W. R. Briggs and J. L. Spudich (eds.). Handbook of Photosensory Receptors. Wiley-VCH
  26. Spudich, J. L., C. Yang, K. H. Jung, and E. N. Spudich. 2000. Retinylidene proteins: Structures and functions from archaea to humans. Annu. Rev. Cell Dev. Biol. 16: 365-392 https://doi.org/10.1146/annurev.cellbio.16.1.365
  27. Vogeley, L., O. A. Sineshchekov, V. D. Trivedi, J. Sasaki, J. L. Spudich, and H. Leucke. 2004. Anabaena sensory rhodopsin: A photochromic color sensor at 2.0A. J. Biol. Chem. 280: 14663-14668 https://doi.org/10.1074/jbc.M501416200
  28. von Lintig, J. and K. Vogt. 2000. Filling the gap in vitamin A research. J. Biol. Chem. 275: 11915-11920 https://doi.org/10.1074/jbc.275.16.11915
  29. Wang, W. W., O. A. Sineshchekov, E. N. Spudich, and J. L. Spudich. 2003. Spectroscopic and photochemical characterization of a deep ocean proteorhodopsin. J. Biol. Chem. 278: 33985-33991 https://doi.org/10.1074/jbc.M305716200