• Title/Summary/Keyword: Microbial Diversity

Search Result 535, Processing Time 0.027 seconds

Genetic Diversity of Pectobacterium carotovorum subsp. brasiliensis Isolated in Korea

  • Lee, Dong Hwan;Kim, Jin-Beom;Lim, Jeong-A;Han, Sang-Wook;Heu, Sunggi
    • The Plant Pathology Journal
    • /
    • v.30 no.2
    • /
    • pp.117-124
    • /
    • 2014
  • The plant pathogenic bacterial genus Pectobacteirum consists of heterogeneous strains. The P. carotovorum species is a complex strain showing divergent characteristics, and a new subspecies named P. carotovorum subsp. brasiliensis has been identified recently. In this paper, we re-identified the P. carotovorum subsp. brasiliensis isolates from those classified under the subspecies carotovorum and newly isolated P. carotovorum subsp. brasiliensis strains. All isolates were able to produce plant cell-wall degrading enzymes such as pectate lyase, polygalacturonase, cellulase and protease. We used genetic and biochemical methods to examine the diversity of P. carotovorum subsp. brasiliensis isolates, and found genetic diversity within the brasiliensis subsp. isolates in Korea. The restriction fragment length polymorphism analysis based on the recA gene revealed a unique pattern for the brasiliensis subspecies. The Korean brasiliensis subsp. isolates were divided into four clades based on pulsed-field gel electrophoresis. However, correlations between clades and isolated hosts or year could not be found, suggesting that diverse brasiliensis subsp. isolates existed.

Effects of Parent Rocks on Soil Microbial Diversity (모암이 토양미생물 다양성에 미치는 영향)

  • Suh, Jang-Sun;Kwon, Jang-Sik;Chon, Gil-Hyong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.3
    • /
    • pp.127-133
    • /
    • 2003
  • The effect of parent rocks to the soil microbial diversity were investigated in soils developed from granite, limestone and basalt parent rocks. In the soils, microbial populations were positively related to the soil chemicals, such as soil pH with ftuorescent Pseudomonas, and soil EC with actinomycetes, fungi, mesophilic Bacillus and alkaliphilic bacteria. Gram negative bacteria, spore forming Bacillus, were maintained relatively same levels of population between granite, limestone and basalt soils. Among the species of Burkholderia, Pseudomonas and Ralstonia were dominated in the granite soils, Pseudomonas, Burkholderia and Phyllobacterium in the limestone soils, and Burkholderia in the basalt soils.

Evaluation of Riverine Microbial Diversity using the Culture-Independent Genetic Fingerprinting Technique (T-RFLP) (유전자지문분석법(T-RFLP)을 이용한 하천 미생물의 다양성 평가)

  • Jeong, Ju-Yong;Lee, Kyong-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.195-200
    • /
    • 2008
  • To analyze the riverine microbial community structure, genetic fingerprints and ecological indexes such as species abundances, diversity, evenness, dominance of targeted rivers in Gyeonggi Province were acquired and evaluated using terminal restriction fragment length polymorphism (T-RFLP) technique. Genetic fingerprinting technique such as T-RFLP, which is able to show the microbial community clearly unlike traditional culture-dependent techniques, was thought to be useful to analyse the riverine microbial ecosystem under various factors. Riverine ecosystem evaluation using visible organisms would give biased results with time, targeted organism and researcher. But, T-RFLP, which can exclude the subjected biases such as culture condition and identification, would be an option to understand natural ecosystem by including the microorganisms that defy culture but perform important functions.

Soil Microbial Diversity of Paddy Fields in Korea (논 토양 서식 미생물의 다양성에 관한 연구)

  • Suh, Jang-Sun;Shin, Jae-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.2
    • /
    • pp.200-207
    • /
    • 1997
  • In order to evaluate the soil microbiological characteristics of paddy fields in Korea, surface soils were sampled from 63 sites in different agroclimatic zones before submersion of the fields. The distribution of microorganisms and the microbial diversity indices were examined. Soil microbial populations were generally higher in southern area than in northern area. The colony forming units(cfus) of fluorescence Pseudomonas sp. showed the greatest regional differences, among the microbes investigated. On the topographical differences, the cfus of aerobic bacteria, fluorescence Pseudomonas sp. and Azotobacter sp. maintained high level in coastal plains; and on the sail textural difference, fungus was the highest in clay soil, but Bacillus sp., Azotobacter sp and denitrifiers were the highest in silty clay loam soil at 0.05 probability level based on the multiple range test. The numbers of ammonium oxidizers and Azotobacter sp. were increased with soil pH. Microbial diversity indices of paddy fields which calculated from the percentages of Bacillus sp. fluorescence Pseudomonas sp. Azotobacter sp. denitrifiers, ammonium oxidizers, nitrite oxidizers, actinomycetes and fungus to these total microbial numbers were between 0.109 and 0.661. On the soil textures, the microbial diversity indices of sandy, sandy loam, silty clay loam, clay loam and clay soil were 0.443, 0.427, 0.414, 0.405 and 0.362 respectively.

  • PDF

Investigation of Bacterial Diversity in Membrane Bioreactor and Conventional Activated Sludge Processes from Petroleum Refineries Using Phylogenetic and Statistical Approaches

  • Silva, Cynthia;Jesus, Ederson C.;Torres, Ana P. R.;Sousa, Maira P.;Santiago, Vania M. J.;Oliveira, Valeria M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.447-459
    • /
    • 2010
  • Bacterial diversity of two distinct wastewater treatment systems, conventional activated sludge (CAS) and membrane bioreactor (MBR), of petroleum refineries were investigated through 16S rRNA gene libraries. Sequencing and phylogenetic analysis showed that the bacterial community composition of sludge samples was distinct between the two wastewater treatment systems. MBR clones belonged predominantly to Class Betaproteobacteria, represented mainly by genera Thiobacillus and Thauera, whereas CAS clones were mostly related to Class Alphaproteobacteria, represented by uncultured bacteria related to Order Parvularculales. Richness estimators ACE and Chao revealed that the diversity observed in both libraries at the species level is an underestimate of the total bacterial diversity present in the environment and further sampling would yield an increased observed diversity. Shannon and Simpson diversity indices were different between the libraries and revealed greater bacterial diversity for the MBR library, considering an evolutionary distance of 0.03. LIBSHUFF analyses revealed that MBR and CAS communities were significantly different at the 95% confidence level ($P{\leq}0.05$) for distances $0{\leq}D{\leq}0.20$. This work described, qualitatively and quantitatively, the structure of bacterial communities in industrial-scale MBR and CAS processes of the wastewater treatment system from petroleum refineries and demonstrated clearly differentiated communities responsible for the stable performance of wastewater treatment plants.

Assessment of Rhizosphere Microbial Community Structure in Tomato Plants after Inoculation of Bacillus Species for Inducing Tolerance to Salinity (토마토에 염류 내성을 유도하는 바실러스 균주 처리 후 근권 미생물 군집 구조 연구)

  • Yoo, Sung-Je;Lee, Shin Ae;Weon, Hang-Yeon;Song, Jaekyeong;Sang, Mee Kyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.1
    • /
    • pp.49-59
    • /
    • 2021
  • BACKGROUND: Soil salinity causes reduction of crop productivity. Rhizosphere microbes have metabolic capabilities and ability to adaptation of plants to biotic and abiotic stresses. Plant growth-promoting bacteria (PGPB) could play a role as elicitors for inducing tolerance to stresses in plants by affecting resident microorganism in soil. This study was conducted to demonstrate the effect of selected strains on rhizosphere microbial community under salinity stress. METHODS AND RESULTS: The experiments were conducted in tomato plants in pots containing field soil. Bacterial suspension was inoculated into three-week-old tomato plants, one week after inoculation, and -1,000 kPa-balanced salinity stress was imposed. The physiological and biochemical attributes of plant under salt stress were monitored by evaluating pigment, malondialdehyde (MDA), proline, soil pH, electrical conductivity (EC) and ion concentrations. To demonstrate the effect of selected Bacillus strains on rhizosphere microbial community, soil microbial diversity and abundance were evaluated with Illumina MiSeq sequencing, and primer sets of 341F/805R and ITS3/ITS4 were used for bacterial and fungal communities, respectively. As a result, when the bacterial strains were inoculated and then salinity stress was imposed, the inoculation decreases the stress susceptibility including reduction in lipid peroxidation, enhanced pigmentation and proline accumulation which subsequently resulted in better plant growth. However, bacterial inoculations did not affect diversity (observed OTUs, ACE, Chao1 and Shannon) and structure (principle coordinate analysis) of microbial communities under salinity stress. Furthermore, relative abundance in microbial communities had no significant difference between bacterial treated- and untreated-soils under salinity stress. CONCLUSION: Inoculation of Bacillus strains could affect plant responses and soil pH of tomato plants under salinity stress, whereas microbial diversity and abundance had no significant difference by the bacterial treatments. These findings demonstrated that Bacillus strains could alleviate plant's salinity damages by regulating pigments, proline, and MDA contents without significant changes of microbial community in tomato plants, and can be used as effective biostimulators against salinity stress for sustainable agriculture.

The Diversity and Similarity of Soil Microbial Communities by DNA Cross Hybrization (DNA 교잡에 의한 토양 미생물 군집의 다양성과 유사성)

  • 김유영;송인근;민병례;조홍범;최영길
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.3
    • /
    • pp.279-284
    • /
    • 1999
  • To investigate soil bacterial diversity according to vegetation types, directly extracted DNA from 5 different soils were cross-hybridized with each other as a probe and target. Pinus densiflora soil was shown the highest value then agricultured soil>naked soil>grass soil>Quercus mongolicas soil in the order of diversity. Cluster analysis by similarity showed that soil microbial communities were categorized into three groups.

  • PDF

Home-Field Advantage: Why Host-Specificity is Important for Therapeutic Microbial Engraftment

  • Tyler J. Long
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.1
    • /
    • pp.124-127
    • /
    • 2023
  • Among certain animals, gut microbiomes demonstrate species-specific patterns of beta diversity. This host-specificity is a potent driver of exogenous microbial exclusion. To overcome persistent translational limitations, translational microbiome research and therapeutic development must account for host-specific patterns of microbial engraftment. This commentary seeks to highlight the important implications of host-specificity for microbial ecology, Fecal Microbiota Transplantation (FMT), next-generation probiotics, and translational microbiota research.

Patterns of Utilizing Sole Carbon Source by Soil Microbes in a Forest Soil (토양 세균 군집의 유일탄소원 이용에 의한 지문분석)

  • 송인근;최영길;안영범;신규철;조홍범
    • Korean Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.65-71
    • /
    • 1999
  • This study was carried out utilzing ability of sole carbon sources in soil microbial communities used by Biolog GN microplate. Cluster analysis showed that soil microbial cornmuties were categorized into three groups as forest, non-forest soil and naked soil of microbial group. Soil microbial commutites in a forest soil of Qirercus mongoIica was divided into another group microbial communites in Qirercus dendata vegetation soil and Pinus dnzsqlora vegetation soil by Multidimensional scaling(MDS). Generally, sole carbon utilzing abilties were higher in order of polymer, amino acids and carboxylic acids, but it was lower in amides substrates carbon group. From the result: it was supposed that metabolic diversity of microbial communities was corresponded to vegetation succession.

  • PDF

Isolation of Microorganisms for Biotechnological Application

  • Franco, Christopher-M.M.;Mcclure, Nicholas-C.
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.2
    • /
    • pp.101-110
    • /
    • 1998
  • The extent of biological diversity being revealed by molecular techniques accentuates the need to develop methods to isolate and culture the large numbers of microorganisms that remain to be studied. The discovery and characterization of novel microorganisms will provide information useful in understanding microbial ecosystems and have the potential to lead to new products for the biotechnology industry. In this review, the use of innovative techniques and exploration of unusual ecosystems, that have begun to address the challenge of isolating the "uncultured" members of the microbial population, are examined.

  • PDF