• Title/Summary/Keyword: Microbial Biotechnology

Search Result 2,188, Processing Time 0.037 seconds

Modeling of Typical Microbial Cell Growth in Batch Culture

  • Jianqiang Lin;Lee, Sang-Mok;Lee, Ho-Joon;Koo, Yoon-Mo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.5
    • /
    • pp.382-385
    • /
    • 2000
  • A mathematical model was developed, based on the time dependent changes of the specific growth rate, for prediction of the typical microbial cell growth in batch cultures. This model could predict both the lag growth phase and the stationary growth phase of batch cultures, and it was tested with the batch growth of Trichoderma reesei and Lactobacillus delbrueckii.

  • PDF

The Role of High-throughput Transcriptome Analysis in Metabolic Engineering

  • Jewett, Michael C.;Oliveira, Ana Paula;Patil, Kiran Raosaheb;Nielsen, Jens
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.5
    • /
    • pp.385-399
    • /
    • 2005
  • The phenotypic response of a cell results from a well orchestrated web of complex interactions which propagate from the genetic architecture through the metabolic flux network. To rationally design cell factories which carry out specific functional objectives by controlling this hierarchical system is a challenge. Transcriptome analysis, the most mature high-throughput measurement technology, has been readily applied In strain improvement programs in an attempt to Identify genes involved in expressing a given phenotype. Unfortunately, while differentially expressed genes may provide targets for metabolic engineering, phenotypic responses are often not directly linked to transcriptional patterns, This limits the application of genome-wide transcriptional analysis for the design of cell factories. However, improved tools for integrating transcriptional data with other high-throughput measurements and known biological interactions are emerging. These tools hold significant promise for providing the framework to comprehensively dissect the regulatory mechanisms that identify the cellular control mechanisms and lead to more effective strategies to rewire the cellular control elements for metabolic engineering.

Biochemical Characterization of a Novel Alkaline and Detergent Stable Protease from Aeromonas veronii OB3

  • Manni, Laila;Misbah, Asmae;Zouine, Nouhaila;Ananou, Samir
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.358-365
    • /
    • 2020
  • An organic solvent- and bleach-stable protease-producing strain was isolated from a polluted river water sample and identified as Aeromonas veronii OB3 on the basis of biochemical properties (API 20E) and 16S rRNA sequence analysis. The strain was found to hyper-produce alkaline protease when cultivated on fish waste powder-based medium (HVSP, 4080 U/ml). The biochemical properties and compatibility of OB3 with several detergents and additives were studied. Maximum activity was observed at pH 9.0 and 60℃. The crude protease displayed outstanding stability to the investigated surfactants and oxidants, such as Tween 80, Triton X-100, and H2O2, and almost 36% residual activity when incubated with 1% SDS. Remarkably, the enzyme demonstrated considerable compatibility with commercial detergents, retaining more than 100% of its activity with Ariel and Tide (1 h, 40℃). Moreover, washing performance of Tide significantly improved by the supplementation of small amounts of OB3 crude protease. These properties suggest the potential use of this alkaline protease as a bio-additive in the detergent industry and other biotechnological processes such as peptide synthesis.

Preventive Effect of Ebelactone B, an Esterase Inhibitor on Rice Sheath Blight Caused by Rhizoctonia solani

  • Chun, Hyo-Kon;Ko, Hack-Ryong;Moon, Hang-Sick;Kho, Yung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.6
    • /
    • pp.335-340
    • /
    • 1995
  • Two types of Rhizoctonia solani esterases induced by cutin hydrolysate were partially purified by ammonium sulfate precipitation and gel filtration. The esterase I with hydrolyzing activity toward both ${\rho}-ni-trophenyl$ butyrate and ${\rho}-nitrophenyl$ palmitate and the esterase II with hydrolyzing activity toward only ${\rho}-ni-trophenyl$ butyrate were inhibited by ebelactone B, an esterase inhibitor produced by actinomycetes with $IC_{50}$ values of 0.01 and $0.09{\;}\mu\textrm{g}/l$, respectively. Spraying on rice seedling with ebelactone B at a concentration of $30{\;}\mu\textrm{g}/ml$ completely suppressed infection by R. solani. Ebelactone B could not protect the wounded rice seedling and did not show any inhibitory effect on the mycelial growth at a concentration of 1 mg/ml. These results indicate that ebelactone B, an esterase inhibitor protects rice plants from infection with R. solani by inhibition of penetration, not through fungitoxic or fungicidal effect.

  • PDF

A Direct Approach for Finding Functional Lipolytic Enzymes from the Paenibacillus polymyxa Genome

  • JUNG, YEO-JIN;KIM, HYUNG-KWOUN;KIM, JIHYUN F.;PARK, SEUNG-HWAN;OH, TAE-KWANG;LEE, JUNG-KEE
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.155-160
    • /
    • 2005
  • Abstract A direct approach was used to retrieve active lipases from Paenibacillus polymyxa genome databases. Twelve putative lipase genes were tested using a typical lipase sequence rule built on the basis of a consensus sequence of a catalytic triad and oxyanion hole. Among them, six genes satisfied the sequence rule and had similarity (about 25%) with known bacterial lipases. To obtain the six lipase proteins, lipase genes were expressed in E. coli cells and lipolytic activities were measured by using tributyrin plate and pnitrophenyl caproate. One of them, contig 160-26, was expressed as a soluble and active form in E. coli cell. After purifying on Ni-NTA column, its detailed biochemical properties were characterized. It had a maximum hydrolytic activity at $30^{\circ}C$ and pH 7- 8, and was stable up to $40^{\circ}C$ and in the range of pH 5- 8. It most rapidly hydrolyzed pNPC$_6$ among various PNPesters. The other contigs were expressed more or less as soluble forms, although no lipolytic activities were detected. As they have many conserved regions with lipase 160-26 as well as other bacterial lipases throughout their equence, they are suggested as true lipase genes.

The effect of citrus and onion peel extracts, calcium lactate, and phosvitin on microbial quality of seasoned chicken breast meat

  • Alahakoon, Amali U.;Bae, Young Sik;Kim, Hyun Joo;Jung, Samooel;Jayasena, Dinesh D.;Yong, Hae In;Kim, Sun Hyo;Jo, Cheorun
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.2
    • /
    • pp.131-137
    • /
    • 2013
  • The inhibitory effect of citrus peel extract, onion peel extract, calcium lactate and phosvitin on microbial growth was investigated in seasoned chicken breast meat during aerobic storage at $4^{\circ}C$, $10^{\circ}C$ and $20^{\circ}C$. Citrus peel and onion peel extract significantly improved (p<0.05) the microbial quality of the sample by reducing the initial counts of the microbial flora compared to control and other two treatments. Data clearly revealed that the counts of the total aerobic bacteria significantly increased with the increase in storage temperature. The shelf life of all samples stored under $20^{\circ}C$ was less than 6 days, while the shelf life of citrus and onion treatment can be extended more than 9 days at $4^{\circ}C$ and more than 6 days at $10^{\circ}C$ in aerobic storage condition. These results indicated that citrus and onion peel extracts are efficient treatment methods to prevent microbial spoilage of seasoned chicken products during storage at $4^{\circ}C$. However, there was an adverse effect of addition of citrus and onion peel extract on several sensory attributes which need to be improved by reformulation of seasoning.

Enhancing the Anaerobic Digestion of Corn Stalks Using Composite Microbial Pretreatment

  • Yuan, Xufeng;Li, Peipei;Wang, Hui;Wang, Xiaofen;Cheng, Xu;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.7
    • /
    • pp.746-752
    • /
    • 2011
  • A composite microbial system (XDC-2) was used to pretreat and hydrolyze corn stalk to enhance anaerobic digestion. The results of pretreatment indicated that sCOD concentrations of hydrolysate were highest (8,233 mg/l) at the fifth day. XDC-2 efficiently degraded the corn stalk by nearly 45%, decreasing the cellulose content by 22.7% and the hemicellulose content by 74.1%. Total levels of volatile products peaked on the fifth day. The six major compounds present were ethanol (0.29 g/l), acetic acid (0.55 g/l), 1,2-ethanediol (0.49 g/l), propionic acid (0.15 g/l), butyric acid (0.22 g/l), and glycerine (2.48 g/l). The results of anaerobic digestion showed that corn stalks treated by XDC-2 produced 68.3% more total biogas and 87.9% more total methane than untreated controls. The technical digestion time for the treated corn stalks was 35.7% shorter than without treatment. The composite microbial system pretreatment could be a cost-effective and environmentally friendly microbial method for efficient biological conversion of corn stalk into bioenergy.

A Commensal Thermophile, Symbiobacterium toebii: Distribution, Characterization, and Genome Analysis

  • Bae Jin-Woo;Kim Kwang;Song Jae Jun;Ha Jae Seok;Kim Joong-Jae;Kang Gwan-Tae;Kim Mi-Hwa;Hong Seung-Pyo;Sung Moon-Hee
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2001.11a
    • /
    • pp.46-53
    • /
    • 2001
  • A commensal thermophile, Symbiobacterium toebii, isolated from hay compost (toebii) in Korea commensally interacted with a thermophilic Geobacillus toebii sp. nov., which was a new species within the genus Geobacillus on the basis of the phenotypic traits and molecular systematic data. S. toebii required the crude extracts and/or culture supernatant of the Geobacillus toebii for axenic growth and could grow on the temperature between 45 and $70^{\circ}C$ (optimum: $60^{\circ}C$; 2.4 h doubling time) and pH 6.0 and 9.0 (optimum: pH 7.5). The G+C content of the genomic DNA was $65 mol\%$, and the major quinones were MK-6 and MK-7. A phylogenetic analysis of its 16S rDNA sequence indicated that Symbiobacterium toebii was closely related with solely reported Symbiobacterium thermophilum. The presence of the commensal thermophile 16S rDNA and accumulation of indole in all the enriched cultures indicate that Symbiobacterium toebii is widely distributed in the various soils. The genome of S. toebii constituted a circular chromosome of 3,280,275 base pairs and there was not an extra-chromosomal element (ECE). It contained about 4,107 predicted coding sequences. Of these protein coding genes, about $45.6\%$ was encoded well-known proteins and annotated the functional assignment of 1,874 open reading frames (ORFs), and the rest predicted to have unknown functions. The genes encoding thermostable tyrosine phenol-lyase and tryptophan indole-lyase were cloned from the genomic DNA of S. toebii and the enzymatic production of L-tyrosine and L-tryptophan was carried out with two thermostable enzymes overexpressed in recombinant E. coli.

  • PDF