DOI QR코드

DOI QR Code

Enhancing the Anaerobic Digestion of Corn Stalks Using Composite Microbial Pretreatment

  • Yuan, Xufeng (Center of Biomass Engineering / College of Agronomy and Biotechnology, China Agricultural University) ;
  • Li, Peipei (Center of Biomass Engineering / College of Agronomy and Biotechnology, China Agricultural University) ;
  • Wang, Hui (Center of Biomass Engineering / College of Agronomy and Biotechnology, China Agricultural University) ;
  • Wang, Xiaofen (Center of Biomass Engineering / College of Agronomy and Biotechnology, China Agricultural University) ;
  • Cheng, Xu (Center of Biomass Engineering / College of Agronomy and Biotechnology, China Agricultural University) ;
  • Cui, Zongjun (Center of Biomass Engineering / College of Agronomy and Biotechnology, China Agricultural University)
  • Received : 2010.11.24
  • Accepted : 2011.04.06
  • Published : 2011.07.28

Abstract

A composite microbial system (XDC-2) was used to pretreat and hydrolyze corn stalk to enhance anaerobic digestion. The results of pretreatment indicated that sCOD concentrations of hydrolysate were highest (8,233 mg/l) at the fifth day. XDC-2 efficiently degraded the corn stalk by nearly 45%, decreasing the cellulose content by 22.7% and the hemicellulose content by 74.1%. Total levels of volatile products peaked on the fifth day. The six major compounds present were ethanol (0.29 g/l), acetic acid (0.55 g/l), 1,2-ethanediol (0.49 g/l), propionic acid (0.15 g/l), butyric acid (0.22 g/l), and glycerine (2.48 g/l). The results of anaerobic digestion showed that corn stalks treated by XDC-2 produced 68.3% more total biogas and 87.9% more total methane than untreated controls. The technical digestion time for the treated corn stalks was 35.7% shorter than without treatment. The composite microbial system pretreatment could be a cost-effective and environmentally friendly microbial method for efficient biological conversion of corn stalk into bioenergy.

Keywords

References

  1. AHAP (American Public Health Association/American Water Works Association/Water Environment Federation). 1998. Standard Methods for the Examination of Water and Wastewater. 20th Ed. Washington DC, USA.
  2. Binod, P., R. Sindhu, R. R. Singhania, S. Vikram, L. Devi, and S. Nagalakshmi. 2010. Bioethanol production from rice straw: An overview. Bioresour. Technol. 101: 4767-4774. https://doi.org/10.1016/j.biortech.2009.10.079
  3. Cassini, S. T., M. C. E. Andrade, T. A. Abreu, R. Keller, and R. F. Goncalves. 2005. Alkaline and acid hydrolytic processes in aerobic and anaerobic sludges: Effect on total EPS and fractions. 4th International Symposium on Anaerobic Digestion of Solid Waste, Copenhagen.
  4. Cui, Z. J., M. D. Li, Z. Piao, Z. Y. Huang, M. Ishii, and Y. Igarashi. 2002. Selection of a composite microbial system MC1 with efficient and stability cellulose degradation bacteria and its function [In Chinese]. Huan Jing Ke Xue 23: 36-39.
  5. Desvaux, M., E. Guedon, and H. Petitdemange. 2000. Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium. Appl. Environ. Microbiol. 66: 2461-2470. https://doi.org/10.1128/AEM.66.6.2461-2470.2000
  6. Desvaux, M., E. Guedon, and H. Petitdemange. 2001. Kinetics and metabolism of cellulose degradation at high substrate concentrations in steady-state continuous cultures of Clostridium cellulolyticum on a chemically defined medium. Appl. Environ. Microbiol. 67: 3837-3845. https://doi.org/10.1128/AEM.67.9.3837-3845.2001
  7. Guo, P., W. B. Zhu, H. Wang, Y. H. Lu, D. Zheng, and Z. J. Cui. 2010. Functional characteristics and diversity of a novel lignocelluloses degrading composite microbial system with high xylanase activity. J. Microbiol. Biotechnol. 20: 254-264.
  8. Guo, P., X. F. Wang, W. B. Zhu, H. Y. Yang, X. Cheng, and Z. J. Cui. 2008. Degradation of corn stalk by the composite microbial system of MC1. J. Environ. Sci. 20: 109-114. https://doi.org/10.1016/S1001-0742(08)60017-0
  9. Haruta, S., Z. Cui, Z. Huang, M. Li, M. Ishii, and Y. Igarashi. 2002. Construction of a stable microbial community with high cellulose-degradation ability. Appl. Microbiol. Biotechnol. 59: 529-534. https://doi.org/10.1007/s00253-002-1026-4
  10. Haruta, S., M. Kondo, K. Nakamura, C. Chaunjit, H. Aiba, M. Ishii and Y. Igarashi. 2004. Succession of a microbial community during stable operation of a semi-continuous garbagedecomposing system. J. Biosci. Bioeng. 98: 20-27. https://doi.org/10.1016/S1389-1723(04)70237-6
  11. Lynd, L. R., H. E. Grethlein, and R. H. Wolkin. 1989. Fermentation of cellulosic substrates in batch and continuous culture by Clostridium thermocellum. Appl. Environ. Microbiol. 55: 3131-3139.
  12. Lynd, L. R., P. J. Weimer, W. H. van Zyl, and I. S. Pretorius. 2002. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506-577. https://doi.org/10.1128/MMBR.66.3.506-577.2002
  13. Malherbe, S. and T. E. Cloete. 2002. Lignocellulose biodegradation: Fundamentals and applications. Rev. Environ. Sci. Biotechnol. 1: 105-144. https://doi.org/10.1023/A:1020858910646
  14. MOA. 2006. China Agricultural Census. China Agriculture Press, Beijing, China.
  15. Mosey, F. E. and X. A. Fernandes. 1989. Patterns of hydrogen in biogas from the anaerobic-digestion of milk-sugars. Water Sci. Technol. 21: 187-196.
  16. Muyzer, G., E. C. D. Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.
  17. Palmowski, L. M. and J. A. Müller. 2000. Influence of the size reduction of organic waste on their anaerobic digestion. Water Sci. Technol. 41: 155-162.
  18. Pavlostathis, S. G., T. L. Miller, and M. J. Wolin. 1988. Fermentation of insoluble cellulose by continuous cultures of Ruminococcus albus. Appl. Environ. Microbiol. 54: 2655-2659.
  19. Sanchez, C. 2009. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol. Adv. 27: 185-194. https://doi.org/10.1016/j.biotechadv.2008.11.001
  20. Sandberg, M. and B. K. Ahring. 1992. Anaerobic treatment of fish-meal process wastewater in a UASB reactor at high pH. Appl. Microbiol. Biotechnol. 36: 800-804.
  21. Singh, S. P. and P. Prerna. 2009. Review of recent advances in anaerobic packed-bed biogas reactors. Renew. Sustain. Energ. Rev. 13: 1569-1575. https://doi.org/10.1016/j.rser.2008.08.006
  22. Ward, A. J., P. J. Hobbs, P. J. Holliman, and D. L. Jones. 2008. Optimisation of the anaerobic digestion of agricultural resources. Bioresour. Technol. 99: 7928-7940. https://doi.org/10.1016/j.biortech.2008.02.044
  23. Wong, K. K. Y., L. U. L. Tan, and J. N. Saddler. 1988. Multiplicity of $\beta$-1,4-xylanase in microorganisms: Functions and applications. Microbiol. Mol. Biol. Rev. 52: 305-317.
  24. Yang, H. Y., X. Wang, L. J. Gao, S. Haruta, M. Ishii, and Y. Igarashi. 2008. Development of an enrichment culture growing at low temperature used for ensiling rice straw. J. Microbiol. Biotechnol. 18: 711-717.
  25. Yang, H., H. Wu, X. Wang, Z. Cui, and Y. Li. 2010. Selection and characteristics of a switchgrass-colonizing microbial community to produce extracellular cellulases and xylanases. Bioresour. Technol. 102: 3546-3550.
  26. Yu, Y., B. Park, and S. Hwang. 2004. Co-digestion of lignocellulosics with glucose using thermophic acidogens. Biochem. Eng. J. 18: 225-229. https://doi.org/10.1016/S1369-703X(03)00127-X
  27. Zhang, R. H. and Z. Q. Zhang. 1999. Digestion of rice straw with an anaerobic phased solids digester system. Bioresour. Technol. 68: 235-245. https://doi.org/10.1016/S0960-8524(98)00154-0
  28. Zheng, M., X. Li, L. Li, X. Yang, and Y. He. 2009. Enhancing anaerobic digestion of corn stover through wet state NaOH pretreatment. Bioresour. Technol. 100: 5140-5145. https://doi.org/10.1016/j.biortech.2009.05.045
  29. Zhu, H., F. Qu, and L. H. Zhu. 1993. Isolation of genomic DNAs from plant, fungi and bacteria using benzyl chloride. Nucleic Acids Res. 21: 5278-5280.
  30. Zhang, B., P. He, F. Lu, and L. H. Zhu. 2008. Enhancement of anaerobic biodegradability of flower stem wastes with vegetable wastes by co-hydrolysis. J. Environ. Sci. 20: 297-303. https://doi.org/10.1016/S1001-0742(08)60047-9

Cited by

  1. Degradation of Lignocelluloses in Rice Straw by BMC-9, a Composite Microbial System vol.24, pp.5, 2011, https://doi.org/10.4014/jmb.1310.10089
  2. Bi-modified Pd-based/carbon-doped TiO2 hollow spheres catalytic for ethylene glycol electrooxidation in alkaline medium vol.31, pp.23, 2011, https://doi.org/10.1557/jmr.2016.429
  3. Evaluation of Biogas Production Performance and Archaeal Microbial Dynamics of Corn Straw during Anaerobic Co-Digestion with Cattle Manure Liquid vol.26, pp.4, 2011, https://doi.org/10.4014/jmb.1509.09043
  4. Evaluation of Biogas Production Performance and Dynamics of the Microbial Community in Different Straws vol.27, pp.3, 2011, https://doi.org/10.4014/jmb.1608.08062
  5. Pretreatment methods of lignocellulosic biomass for anaerobic digestion vol.7, pp.1, 2011, https://doi.org/10.1186/s13568-017-0375-4
  6. Biological pretreatment of corn straw for enhancing degradation efficiency and biogas production vol.11, pp.1, 2011, https://doi.org/10.1080/21655979.2020.1733733
  7. Optimization of Cold Pressing Process Parameters of Chopped Corn Straws for Fuel vol.13, pp.3, 2011, https://doi.org/10.3390/en13030652
  8. Biogenic Catalysis by Adding Compost when Using Wheat Straw in a Biorefinery Concept vol.43, pp.8, 2011, https://doi.org/10.1002/ceat.202000029
  9. Effect on the ensilage performance and microbial community of adding Neolamarckia cadamba leaves to corn stalks vol.13, pp.5, 2011, https://doi.org/10.1111/1751-7915.13588
  10. Chemical and Structural Characterization of Maize Stover Fractions in Aspect of Its Possible Applications vol.14, pp.6, 2011, https://doi.org/10.3390/ma14061527
  11. Symbiotic Bacteroides and Clostridium-rich methanogenic consortium enhanced biogas production of high-solid anaerobic digestion systems vol.14, pp.None, 2021, https://doi.org/10.1016/j.biteb.2021.100685
  12. Influence of the Size of the Fiber Filler of Corn Stalks in the Polylactide Matrix Composite on the Mechanical and Thermomechanical Properties vol.14, pp.23, 2011, https://doi.org/10.3390/ma14237281