DOI QR코드

DOI QR Code

Characterization of Methane Oxidation by a Methanotroph Isolated from a Landfill Cover Soil, South Korea

  • Lee, Eun-Hee (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Yi, Tae-Woo (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Moon, Kyung-Eun (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Park, Hyun-Jung (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Ryu, Hee-Wook (Department of Chemical Engineering, Soongsil University) ;
  • Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
  • Received : 2011.02.01
  • Accepted : 2011.04.26
  • Published : 2011.07.28

Abstract

A methane-oxidizing bacterium was isolated from the enriched culture of a landfill cover soil. The closest relative of the isolate, designated M6, is Methylocystis sp. Based on a kinetic analysis, the maximum specific methane oxidation rate and saturation constant were 4.93 mmol gdry cell $weight^{-1}{\cdot}h^{-1}$ and 23${\mu}M$, respectively. This was the first time a kinetic analysis was performed using pure methanotrophic culture. The methane oxidation by M6 was investigated in the presence of aromatic (m- and pxylene and ethylbenzene) or sulfur (hydrogen sulfide, dimethyl sulfide, methanthiol) compounds. The methane oxidation was inhibited by the presence of aromatic or sulfur compounds.

Keywords

References

  1. Ait-Benichou, S., L. B. Jugnia, C. W. Greer, and A. R. Cabral. 2009. Methanotrophs and methanotrophic activity in engineered landfill biocovers. Waste Manag. 29: 2509-2517. https://doi.org/10.1016/j.wasman.2009.05.005
  2. Albanna, M., M. Warith, and L. Fernandes. 2010. Kinetics of biological methane oxidation in the presence of non-methane organic compounds in landfill bio-covers. Waste Manag. 30: 219-227. https://doi.org/10.1016/j.wasman.2009.09.038
  3. Borjesson, S. 2001. Inhibition of methane oxidation by volatile sulfur compounds (CH3SH and CS2) in landfill cover soils. Waste Manag. Res. 19: 314-319. https://doi.org/10.1177/0734242X0101900408
  4. Bowman, J. P., S. M. Rea, S. A. McCammon, and T. A. McMeekin. 2000. Diversity and community structure within anoxic sediment from marine salinity meromictic lakes and a coastal meromictic marine basin, Vestfold Hills, Eastern Antarctica. Environ. Microbiol. 2: 227-237. https://doi.org/10.1046/j.1462-2920.2000.00097.x
  5. Brosseau, J. and M. Heitz. 1994. Trace gas compound emissions from municipal landfill sanitary sites. Atmos. Environ. 28: 285-293. https://doi.org/10.1016/1352-2310(94)90103-1
  6. Fitch, M. W., G. E. Speitel, and G. Georgiou. 1996. Degradation of trichloroethylene by methanol-grown cultures of Methylosinus trichosporium OB3b PP358. Appl. Environ. Microbiol. 62: 1124-1128.
  7. Gebert, J., N. Stralis-Pavese, M. Alawi, and L. Bodrossy. 2008. Analysis of methanotrophic communities in landfill biofilters using diagnostic microarray. Environ. Microbiol. 10: 1175-1188. https://doi.org/10.1111/j.1462-2920.2007.01534.x
  8. Han, B., T. Su, X. Li, and X. Xing. 2008. Research progresses of methanotrophs and methane monooxygenases. Chin. J. Biotechnol. 24: 1511-1519.
  9. He, R., A. Ruan, C. Jiang, and D. S. Shen. 2008. Responses of oxidation rate and microbial communities to methane in simulated landfill cover soil microcosms. Bioresour. Technol. 99: 7192-7199. https://doi.org/10.1016/j.biortech.2007.12.066
  10. Holmes, A. J., A. Costello, M. E. Lidstrom, and J. C. Murrell. 1995. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol. Lett. 132: 203-208. https://doi.org/10.1111/j.1574-6968.1995.tb07834.x
  11. Jackel, U., S. Schnell, and R. Conrad. 2004. Microbial ethylene production and inhibition of methanotrophic activity in a deciduous forest soil. Soil Biol. Biochem. 36: 835-840. https://doi.org/10.1016/j.soilbio.2004.01.013
  12. Juliette, L. Y., M. R. Hyman, and D. J. Arp. 1993. Inhibition of ammonia oxidation in Nitrosomonas europaea by sulfur compounds: Thioethers are oxidized to sulfoxides by ammonia monooxygenase. Appl. Environ. Microbiol. 59: 3718-3727.
  13. Kjeldsen, P. 1996. Landfill gas migration in soil, p. 114. In T. H. Christensen, R. Cossu, and R. Stegmann (eds.). Landfilling of Waste: Biogas. E & FN Spon, London.
  14. Kumaresan, D., G. C. J. Abell, L. Bodrossy, N. Stralis-Pavese, and J. C. Murrell. 2009. Spatial and temporal diversity of methanotrophs in a landfill cover soil are differentially related to soil abiotic factors. Environ. Microbiol. Rep. 1: 398-407. https://doi.org/10.1111/j.1758-2229.2009.00059.x
  15. Lee, E. H., H. Park, and K. S. Cho. 2010. Characterization of methane, benzene and toluene-oxidizing consortia enriched from landfill and riparian wetland soils. J. Hazard. Mater. 184: 313- 320. https://doi.org/10.1016/j.jhazmat.2010.08.038
  16. Op den Camp, H. J. M., T. Islam, M. B. Stott, H. R. Harhangi, A. Hynes, S. Schouten, et al. 2009. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ. Microbiol. Rep. 1: 293-306. https://doi.org/10.1111/j.1758-2229.2009.00022.x
  17. Saari, A. and P. J. Martikainen. 2003. Dimethyl sulphoxide (DMSO) and dimethyl sulphide (DMS) as inhibitors of methane oxidation in forest soil. Soil Biol. Biochem. 35: 383-389. https://doi.org/10.1016/S0038-0717(02)00288-2
  18. Scheutz, C., P. Kjeldsen, J. E. Bogner, A. De Visscher, J. Gebert, H. A. Hilger, M. Huber-Humer, and K. Spokas. 2009. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manag. Res. 27: 409-455. https://doi.org/10.1177/0734242X09339325
  19. Scheutz, C., H. Mosbæk, and P. Kjeldsen. 2004. Attenuation of methane and volatile organic compounds in landfill soil covers. J. Environ. Qual. 33: 61-71. https://doi.org/10.2134/jeq2004.0061
  20. Smet, E. and H. van Langenhove. 1998. Abatement of volatile organic sulfur compounds in odorous emissions from the bioindustry. Biodegradation 9: 273-284. https://doi.org/10.1023/A:1008281609966
  21. Spokas, K. A. and J. E. Bogner. 2010. Limits and dynamics of methane oxidation in landfill cover soils. Waste Manag. 31: 823-832.
  22. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Anaysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
  23. Trotsenko, Y. A. and J. C. Murrell. 2008. Metabolic aspects of aerobic obligate methanotrophy. Adv. Appl. Microbiol. 63: 183- 229.
  24. Zou, S. C., S. C. Lee, C. Y. Chan, K. F. Ho, X. M. Wang, L. Y. Chan, and Z. X. Zhang. 2003. Characterization of ambient volatile organic compounds at a landfill site in Guangzhou, South China. Chemosphere 51: 1015-1022. https://doi.org/10.1016/S0045-6535(03)00004-3

Cited by

  1. Biodegradation of methane, benzene, and toluene by a consortium MBT14 enriched from a landfill cover soil vol.48, pp.3, 2011, https://doi.org/10.1080/10934529.2013.726812
  2. Effect of trichloroethylene and tetrachloroethylene on methane oxidation and community structure of methanotrophic consortium vol.48, pp.13, 2013, https://doi.org/10.1080/10934529.2013.815559
  3. Biodegradation Capacity Utilization as a New Index for Evaluating Biodegradation Rate of Methane vol.23, pp.5, 2011, https://doi.org/10.4014/jmb.1211.11018
  4. 메탄산화세균의 활성에 미치는 tobermolite, perlite 및 Polyurethane 담체의 영향 vol.41, pp.2, 2011, https://doi.org/10.4014/kjmb.1301.01005
  5. Oxidation of methane by Methylomicrobium album and Methylocystis sp. in the presence of H2S and NH3 vol.36, pp.1, 2014, https://doi.org/10.1007/s10529-013-1339-7
  6. Density-dependent enhancement of methane oxidation activity and growth of Methylocystis sp. by a non-methanotrophic bacterium Sphingopyxis sp vol.4, pp.None, 2011, https://doi.org/10.1016/j.btre.2014.09.007
  7. Influence of nutrients on oxidation of low level methane by mixed methanotrophic consortia vol.23, pp.5, 2011, https://doi.org/10.1007/s11356-016-6174-7
  8. Adverse Effect of the Methanotroph Methylocystis sp. M6 on the Non-Methylotroph Microbacterium sp. NM2 vol.28, pp.10, 2011, https://doi.org/10.4014/jmb.1804.04015
  9. 옥수수와 톨페스큐 근권 유래의 메탄 산화 및 아산화질소 환원 세균 컨소시움 특성 vol.49, pp.2, 2011, https://doi.org/10.48022/mbl.2102.02007
  10. Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability vol.121, pp.17, 2011, https://doi.org/10.1021/acs.chemrev.1c00121
  11. Biofiltration of methane in presence of ethylbenzene or xylene vol.13, pp.1, 2011, https://doi.org/10.1016/j.apr.2021.101271
  12. Impact of hydrogen sulfide on biochar in stimulating the methane oxidation capacity and microbial communities of landfill cover soil vol.286, pp.p1, 2011, https://doi.org/10.1016/j.chemosphere.2021.131650
  13. Conversion of biogas from anaerobic digestion to single cell protein and bio-methanol: mechanism, microorganisms and key factors - A review vol.27, pp.4, 2011, https://doi.org/10.4491/eer.2021.109