• Title/Summary/Keyword: Microbial Biotechnology

Search Result 2,188, Processing Time 0.023 seconds

Molecular Characterization of Burkholderia Strains Isolated from Rice Cultivars (Oryza sativa L.) for Species Identification and Phylogenetic Grouping

  • Madhaiyan, Munusamy;Poonguzhali, Selvaraj;Kwon, Soon-Wo;Song, Myung-Hee;Sa, Tong-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1005-1010
    • /
    • 2008
  • The genus Burkholderia consists of extremely versatile bacteria that occupy diverse niches and are commonly encountered in the rhizosphere of crop plants. In this study, we characterized three plant growth promoting strains assigned as Burkholderia sp. using biochemical and molecular characterization. The Burkholderia spp. strains CBMB40, CBPB-HIM, and CBPB-HOD were characterized using biochemical tests, BIOLOG carbon substrate utilization, fatty acid methyl ester analysis, analysis of recA gene sequences, and DNA-DNA hybridization. The results from these studies indicated that the strains CBMB40, CBPB-HIM, and CBPB-HOD can be assigned under Burkholderia vietnamiensis, Burkholderia ubonensis, and Burkholderia pyrrocinia, respectively.

Enhanced Production of ${\varepsilon}$-Caprolactone by Coexpression of Bacterial Hemoglobin Gene in Recombinant Escherichia coli Expressing Cyclohexanone Monooxygenase Gene

  • Lee, Won-Heong;Park, Eun-Hee;Kim, Myoung-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1685-1689
    • /
    • 2014
  • Baeyer-Villiger (BV) oxidation of cyclohexanone to ${\varepsilon}$-caprolactone in a microbial system expressing cyclohexanone monooxygenase (CHMO) can be influenced by not only the efficient regeneration of NADPH but also a sufficient supply of oxygen. In this study, the bacterial hemoglobin gene from Vitreoscilla stercoraria (vhb) was introduced into the recombinant Escherichia coli expressing CHMO to investigate the effects of an oxygen-carrying protein on microbial BV oxidation of cyclohexanone. Coexpression of Vhb allowed the recombinant E. coli strain to produce a maximum ${\varepsilon}$-caprolactone concentration of 15.7 g/l in a fed-batch BV oxidation of cyclohexanone, which corresponded to a 43% improvement compared with the control strain expressing CHMO only under the same conditions.

A Simple Method for Recovery of Microbial $Poly-{\beta}-hydroxybutyrate$ by Alkaline Solution Treatment

  • Lee, In-Young;Chang, Ho-Nam;Park, Young-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.238-240
    • /
    • 1995
  • A novel and simple purification method for microbial $poly-{\beta}-hydroxybutyrate$ (PHS) was developed. Sodium hydroxide was found to be efficient for digesting cell materials. Initial biomass concentration, NaOH concentation, digestion time, and incubation temperature were optimized. When 40 g/l of biomass was incubated in 0.1 N NaOH at $30^{\circ}C$ for 1 h, PHB purity of 88.4% with a weight average molecular weight ($M_w$) of 770,000 and a polydispersity index (PI) of 2.4 was recovered with a yield of 90.8% from the biomass which initially contained PHB of a $M_w$ of 780,000 and a PI of 2.3.

  • PDF

Microbial Community Analysis using RDP II (Ribosomal Database Project II):Methods, Tools and New Advances

  • Cardenas, Erick;Cole, James R.;Tiedje, James M.;Park, Joon-Hong
    • Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.3-9
    • /
    • 2009
  • Microorganisms play an important role in the geochemical cycles, industry, environmental cleanup, and biotechnology among other fields. Given the high microbial diversity, identification of the microorganism is essential in understanding and managing the processes. One of the most popular and powerful method for microbial identification is comparative 16S rRNA gene analysis. Due to the highly conserved nature of this essential gene, sequencing and later comparison of it against known rRNA databases can provide assignment of the bacteria into the taxonomy, and the identity of its closest relatives. Isolation and sequencing of 16S rRNA genes directly from natural environments (either from DNA or RNA) can also be used to study the structure of the whole microbial community. Nowadays, novel sequencing technologies with massive outputs are giving researchers worldwide the chance to study the microbial world with a depth that was previously too expensive to achieve. In this article we describe commonly used research approaches for the study of individual microorganisms and microbial communities using the tools provided by Ribosomal Database Project website.

Assessment of Compost Maturity on Their Different Stages with Microbial and Biochemical Mass Dynamics (미생물 및 생화학적 질량역적분석에 의한 퇴비화단계별 부숙도 평가)

  • Suresh, Arumuganainar;Choi, Hong Lim;Yao, Hongqing;Zhu, Kun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.4
    • /
    • pp.36-47
    • /
    • 2009
  • Microbial and related biochemical mass of composts are important for optimization of its process and end-products. This study was carried out to assess the specific microbial and related biochemical mass which could be used as an indicator for compost maturity during composting stages. The samples from five compost plants were collected at three stages (Initial, Thermophilic and Mature) and analyzed for total aerobic bacteria (TAB), Coliforms, Escherichia coli, Actinomycetes and fungi. Significantly, the coliforms and E.coli counts decreased during the thermophilic stage and were completely eliminated during mature stage. However, the other microbial mass were completely eliminated during mature stage. Which disclosed that Coliforms and E.coli communities can be used as compost maturity indicator. Interestingly, the microbial biomass carbon and nitrogen ratio (MBC/MBN) were decreased a little during the thermophilic stage due to the decreasing number of coliforms, Ecoli and fungi, while the ratio increased during the mature stage due to increasing fungal and aerobic bacterial counts. In addition the heavy metals were shown strong negative correlation with Actenomycetes. This study provides insight to the evaluation of compost maturity as well as the quality by the metal-microbial interactions.

  • PDF

Cloning, Expression, and Characterization of a Highly Active Alkaline Pectate Lyase from Alkaliphilic Bacillus sp. N16-5

  • Li, Gang;Rao, Lang;Xue, Yanfen;Zhou, Cheng;Zhang, Yun;Ma, Yanhe
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.670-677
    • /
    • 2010
  • An alkaline pectate lyase, Bsp165PelA, was purified to homogeneity from the culture broth of alkaliphilic Bacillus sp. N16-5. The enzyme showed a specific activity as high as 1,000 U/mg and had optimum activity at pH 11.5 and $50^{\circ}C$. It was composed of a single polypeptide chain with a molecular mass of 42 kDa deduced from SDS-PAGE, and its isoelectric point was around pH 6.0. It could efficiently depolymerize polygalacturonate and pectin. Characterization of product formation revealed unsaturated digalacturonate and trigalacturonate as the main products. The pectate lyase gene (pelA) contained an open reading frame (ORF) of 1,089 bp, encoding a 36-amino acids signal peptide and a mature protein of 326 amino acids with a calculated molecular mass of 35.943 Da. The deduced amino acid sequence from the pelA ORF exhibited significant homology to those of known pectate lyases in polysaccharide lyase family 1. Some conserved active-site amino acids were found in the deduced amino acid sequence of Bsp165PelA. $Ca^{2+}$ was not required for activity on pectic substrates.

Assessment of the Dynamics of Microbial Community Associated with Tetraselmis suecica Culture under Different LED Lights Using Next-Generation Sequencing

  • Yang, Su-Jeong;Kim, Hyun-Woo;Choi, Seok-Gwan;Chung, Sangdeok;Oh, Seok Jin;Borkar, Shweta;Kim, Hak Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.12
    • /
    • pp.1957-1968
    • /
    • 2019
  • Tetraselmis is a green algal genus, some of whose species are important in aquaculture as well as biotechnology. In algal culture, fluorescent lamps, traditional light source for culturing algae, are now being replaced by a cost-effective light-emitting diodes (LEDs). In this study, we investigated the effect of LED light of different wavelengths (white, red, yellow, and blue) on the growth of Tetraselmis suecica and its associated microbial community structures using the next-generation sequencing (NGS). The fastest growth rate of T. suecica was shown in the red light, whereas the slowest was in yellow. The highest OTUs (3426) were identified on day 0, whereas the lowest ones (308) were found on day 15 under red light. The top 100 OTUs associated with day 0 and day 5 cultures of T. suecica under the red and yellow LED were compared. Only 26 OTUs were commonly identified among four samples. The highest numbers of unique OTUs were identified at day 0, indicating the high degree of initial microbial diversity of the T. suecica inoculum. The red light-unique OTUs occupied 34.98%, whereas the yellow-specific OTUs accounted for only 2.2%. This result suggested a higher degree of interaction in T. suecica culture under the red light, where stronger photosynthesis occurs. Apparently, the microbial community associated with T. suecica related to the oxygen produced by algal photosynthesis. This result may expand our knowledge about the algae-bacteria consortia, which would be useful for various biotechnological applications including wastewater treatment, bioremediation, and sustainable aquaculture.

Augmenting Plant Immune Responses and Biological Control by Microbial Determinants (새로운 생물적 방제 전략: 미생물 인자 유래 식물면역 유도)

  • Lee, Sang Moo;Chung, Joon-hui;Ryu, Choong-Min
    • Research in Plant Disease
    • /
    • v.21 no.3
    • /
    • pp.161-179
    • /
    • 2015
  • Plant have developed sophisticated defence mechanisms against microbial pathogens. The recent accumulated information allow us to understand the nature of plant immune responses followed by recognition of microbial factors/determinants through cutting-edge genomics and multi-omics techniques. However, the practical approaches to sustain plant health using enhancement of plant immunity is yet to be fully appreciated. Here, we overviewed the general concept and representative examples on the plant immunity. The fungal, bacterial, and viral determinants that was previously reported as the triggers of plant immune responses are introduced and described as the potential protocol of biological control. Specifically, the role of chitin, glucan, lipopolysaccharides/extracellular polysaccharides, microbe/pathogen-associated molecular pattern, antibiotics, mimic-phytohormones, N-acyl homoserine lactone, harpin, vitamins, and volatile organic compounds are considered. We hope that this review stimulates scientific community and farmers to broaden their knowledge on the microbial determinant-based biological control and to apply the technology on the integrated pest management program.

Control of Microbial Shelf Life of Perishable Food by Real-Time Monitoring of $CO_2$ Concentration of its Package (변패성 식품의 포장 내 $CO_2$ 농도의 실시간적 측정에 의한 미생물적 저장수명 제어)

  • Kim, Hwan-Ki;An, Duck-Soon;Lee, Hyuk-Jae;Lee, Dong-Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.17 no.2
    • /
    • pp.33-37
    • /
    • 2011
  • Real time control logic of microbial shelf life of a perishable food, seasoned pork meat has been formulated which exploits monitoring of $CO_2$ concentration of the package. The potential of the proposed logic was examined for storage at dynamic temperature conditions. The start of increase in $CO_2$ production rate from the food or rate of package $CO_2$ concentration change was found to coincide with the point of microbial quality limit and could be used as an index of microbial shelf life determination. This also corresponded to lag time of $CO_2$ concentration change or time for the $CO_2$ concentration to reach a certain value. The application potential of the proposed logic was confirmed for a sensor system to measure on real time and transmit the $CO_2$ concentration wireless to the computer system.

  • PDF