• Title/Summary/Keyword: MicroRNAs

Search Result 375, Processing Time 0.023 seconds

MicroRNAs in Human Diseases: From Cancer to Cardiovascular Disease

  • Ha, Tai-You
    • IMMUNE NETWORK
    • /
    • v.11 no.3
    • /
    • pp.135-154
    • /
    • 2011
  • The great discovery of microRNAs (miRNAs) has revolutionized current cell biology and medical science. miRNAs are small conserved non-coding RNA molecules that post-transcriptionally regulate gene expression by targeting the 3' untranslated region of specific messenger RNAs for degradation or translational repression. New members of the miRNA family are being discovered on a daily basis and emerging evidence has demonstrated that miRNAs play a major role in a wide range of developmental process including cell proliferation, cell cycle, cell differentiation, metabolism, apoptosis, developmental timing, neuronal cell fate, neuronal gene expression, brain morphogenesis, muscle differentiation and stem cell division. Moreover, a large number of studies have reported links between alterations of miRNA homeostasis and pathological conditions such as cancer, psychiatric and neurological diseases, cardiovascular disease, and autoimmune disease. Interestingly, in addition, miRNA deficiencies or excesses have been correlated with a number of clinically important diseases ranging from cancer to myocardial infarction. miRNAs can repress the gene translation of hundreds of their targets and are therefore well-positioned to target a multitude of cellular mechanisms. As a consequence of extensive participation in normal functions, it is quite logical to ask the question if abnormalities in miRNAs should have importance in human diseases. Great discoveries and rapid progress in the past few years on miRNAs provide the hope that miRNAs will in the near future have a great potential in the diagnosis and treatment of many diseases. Currently, an explosive literature has focussed on the role of miRNA in human cancer and cardiovascular disease. In this review, I briefly summarize the explosive current studies about involvement of miRNA in various human cancers and cardiovascular disease.

Regulatory Network of MicroRNAs, Target Genes, Transcription Factors and Host Genes in Endometrial Cancer

  • Xue, Lu-Chen;Xu, Zhi-Wen;Wang, Kun-Hao;Wang, Ning;Zhang, Xiao-Xu;Wang, Shang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.475-483
    • /
    • 2015
  • Genes and microRNAs (miRNAs) have important roles in human oncology. However, most of the biological factors are reported in disperse form which makes it hard to discover the pathology. In this study, genes and miRNAs involved in human endometrial cancer(EC) were collected and formed into regulatory networks following their interactive relations, including miRNAs targeting genes, transcription factors (TFs) regulating miRNAs and miRNAs included in their host genes. Networks are constructed hierarchically at three levels: differentially expressed, related and global. Among the three, the differentially expressed network is the most important and fundamental network that contains the key genes and miRNAs in EC. The target genes, TFs and miRNAs are differentially expressed in EC so that any mutation in them may impact on EC development. Some key pathways in networks were highlighted to analyze how they interactively influence other factors and carcinogenesis. Upstream and downstream pathways of the differentially expressed genes and miRNAs were compared and analyzed. The purpose of this study was to partially reveal the deep regulatory mechanisms in EC using a new method that combines comprehensive genes and miRNAs together with their relationships. It may contribute to cancer prevention and gene therapy of EC.

Insilico profiling of microRNAs in Korean ginseng (Panax ginseng Meyer)

  • Mathiyalagan, Ramya;Subramaniyam, Sathiyamoorthy;Natarajan, Sathishkumar;Kim, Yeon Ju;Sun, Myung Suk;Kim, Se Young;Kim, Yu-Jin;Yang, Deok Chun
    • Journal of Ginseng Research
    • /
    • v.37 no.2
    • /
    • pp.227-247
    • /
    • 2013
  • MicroRNAs (miRNAs) are a class of recently discovered non-coding small RNA molecules, on average approximately 21 nucleotides in length, which underlie numerous important biological roles in gene regulation in various organisms. The miRNA database (release 18) has 18,226 miRNAs, which have been deposited from different species. Although miRNAs have been identified and validated in many plant species, no studies have been reported on discovering miRNAs in Panax ginseng Meyer, which is a traditionally known medicinal plant in oriental medicine, also known as Korean ginseng. It has triterpene ginseng saponins called ginsenosides, which are responsible for its various pharmacological activities. Predicting conserved miRNAs by homology-based analysis with available expressed sequence tag (EST) sequences can be powerful, if the species lacks whole genome sequence information. In this study by using the EST based computational approach, 69 conserved miRNAs belonging to 44 miRNA families were identified in Korean ginseng. The digital gene expression patterns of predicted conserved miRNAs were analyzed by deep sequencing using small RNA sequences of flower buds, leaves, and lateral roots. We have found that many of the identified miRNAs showed tissue specific expressions. Using the insilico method, 346 potential targets were identified for the predicted 69 conserved miRNAs by searching the ginseng EST database, and the predicted targets were mainly involved in secondary metabolic processes, responses to biotic and abiotic stress, and transcription regulator activities, as well as a variety of other metabolic processes.

Differential Distribution of microRNAs in Breast Cancer Grouped by Clinicopathological Subtypes

  • Li, Jian-Yi;Jia, Shi;Zhang, Wen-Hai;Zhang, Yang;Kang, Ye;Li, Pi-Song
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.3197-3203
    • /
    • 2013
  • Background: microRNAs (miRNAs) that regulate proliferation, invasion and metastasis are considered to be the principal molecular basis of tumor heterogeneity. Breast cancer is not a homogeneous tissue. Thus, it is very important to perform microarray-based miRNA screening of tumors at different sites. Methods: Breast tissue samples from the centers and edges of tumors of 30 patients were classified into 5 clinicopathological subtypes. In each group, 6 specimens were examined by microRNA array. All differential miRNAs were analyzed between the edges and centers of the tumors. Results: Seventeen kinds of miRNAs were heterogeneously distributed in the tumors from different clinicopathological subtypes that included 1 kind of miRNA in Luminal A and Luminal B Her2+ subtypes, 4 kinds in Luminal A and Her2 overexpression subtypes, 6 kinds in Luminal B Ki67+ and Luminal B Her2+ subtypes, 2 kinds between Luminal B Ki67+ and triple-negative breast cancer (TNBC) subtypes, 2 kinds between Luminal B Her2+ and TNBC subtypes, and 2 kinds between Luminal B Ki67+, Luminal B Her2+, and TNBC subtypes. Twenty kinds of miRNAs were homogenously distributed in the tumors from different clinicopathological subtypes that included 6 kinds of miRNAs in Luminal B Ki67+ and Luminal B Her2+ subtypes, 1 kind in Luminal B Ki67+ and Her2 overexpression subtypes, 10 kinds between Luminal B Ki67+ and TNBC subtypes, 2 kinds in Luminal B Her2+ and TNBC subtypes, and 1 kind between Luminal B Ki67+, Luminal B Her2+, and TNBC subtypes. Conclusions: A total of 37 miRNAs were significantly distributed in tumors from the centers to edges, and in all clinicopathological subtypes.

Characterization and Profiling of Liver microRNAs by RNA-sequencing in Cattle Divergently Selected for Residual Feed Intake

  • Al-Husseini, Wijdan;Chen, Yizhou;Gondro, Cedric;Herd, Robert M.;Gibson, John P.;Arthur, Paul F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.10
    • /
    • pp.1371-1382
    • /
    • 2016
  • MicroRNAs (miRNAs) are short non-coding RNAs that post-transcriptionally regulate expression of mRNAs in many biological pathways. Liver plays an important role in the feed efficiency of animals and high and low efficient cattle demonstrated different gene expression profiles by microarray. Here we report comprehensive miRNAs profiles by next-gen deep sequencing in Angus cattle divergently selected for residual feed intake (RFI) and identify miRNAs related to feed efficiency in beef cattle. Two microRNA libraries were constructed from pooled RNA extracted from livers of low and high RFI cattle, and sequenced by Illumina genome analyser. In total, 23,628,103 high quality short sequence reads were obtained and more than half of these reads were matched to the bovine genome (UMD 3.1). We identified 305 known bovine miRNAs. Bta-miR-143, bta-miR-30, bta-miR-122, bta-miR-378, and bta-let-7 were the top five most abundant miRNAs families expressed in liver, representing more than 63% of expressed miRNAs. We also identified 52 homologous miRNAs and 10 novel putative bovine-specific miRNAs, based on precursor sequence and the secondary structure and utilizing the miRBase (v. 21). We compared the miRNAs profile between high and low RFI animals and ranked the most differentially expressed bovine known miRNAs. Bovine miR-143 was the most abundant miRNA in the bovine liver and comprised 20% of total expressed mapped miRNAs. The most highly expressed miRNA in liver of mice and humans, miR-122, was the third most abundant in our cattle liver samples. We also identified 10 putative novel bovine-specific miRNA candidates. Differentially expressed miRNAs between high and low RFI cattle were identified with 18 miRNAs being up-regulated and 7 other miRNAs down-regulated in low RFI cattle. Our study has identified comprehensive miRNAs expressed in bovine liver. Some of the expressed miRNAs are novel in cattle. The differentially expressed miRNAs between high and low RFI give some insights into liver miRNAs regulating physiological pathways underlying variation in this measure of feed efficiency in bovines.

Downregulated microRNAs in the colorectal cancer: diagnostic and therapeutic perspectives

  • Hernandez, Rosa;Sanchez-Jimenez, Ester;Melguizo, Consolacion;Prados, Jose;Rama, Ana Rosa
    • BMB Reports
    • /
    • v.51 no.11
    • /
    • pp.563-571
    • /
    • 2018
  • Colorectal cancer (CRC), the third most common cancer in the world, has no specific biomarkers that facilitate its diagnosis and subsequent treatment. The miRNAs, small single-stranded RNAs that repress the mRNA translation and trigger the mRNA degradation, show aberrant levels in the CRC, by which these molecules have been related with the initiation, progression, and drug-resistance of this cancer type. Numerous studies show the microRNAs influence the cellular mechanisms related to the cell cycle, differentiation, apoptosis, and migration of the cancer cells through the post-transcriptionally regulated gene expression. Specific patterns of the upregulated and down-regulated miRNA have been associated with the CRC diagnosis, prognosis, and therapeutic response. Concretely, the downregulated miRNAs represent attractive candidates, not only for the CRC diagnosis, but for the targeted therapies via the tumor-suppressing microRNA replacement. This review shows a general overview of the potential uses of the miRNAs in the CRC diagnosis, prognosis, and treatment with a special focus on the downregulated ones.

Networks of MicroRNAs and Genes in Retinoblastomas

  • Li, Jie;Xu, Zhi-Wen;Wang, Kun-Hao;Wang, Ning;Li, De-Qiang;Wang, Shang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6631-6636
    • /
    • 2013
  • Through years of effort, researchers have made notable progress in gene and microRNA fields about retinoblastoma morbidity. However, experimentally validated data for genes, microRNAs (miRNAs) and transcription factors (TFs) can only be found in a scattered form, which makes it difficult to conclude the relationship between genes and retinoblastoma systematically. In this study, we regarded genes, miRNAs and TFs as elements in the regulatory network and focused on the relationship between pairs of examples. In this way, we paid attention to all the elements macroscopically, instead of only researching one or several. To show regulatory relationships over genes, miRNAs and TFs clearly, we constructed 3 regulatory networks hierarchically, including a differentially expressed network, a related network and a global network, for analysis of similarities and comparison of differences. After construction of the three networks, important pathways were highlighted. We constructed an upstream and downstream element table of differentially expressed genes and miRNAs, in which we found self-adaption relations and circle-regulation. Our study systematically assessed factors in the pathogenesis of retinoblastoma and provided theoretical foundations for gene therapy researchers. In future studies, especial attention should be paid to the highlighted genes and miRNAs.

Effects of hypoxia on the concentration of circulating miR-210 in serum and the expression of HIF-1α and HSP90α in tissues of olive flounder (Paralichthys olivaceus)

  • Abdellaoui, Najib;Kwak, Jun Soung;Kim, Ki Hong
    • Journal of fish pathology
    • /
    • v.33 no.1
    • /
    • pp.35-43
    • /
    • 2020
  • Hypoxia is a serious problem in the marine ecosystem causing a decline in aquatic resources. MicroRNAs (miRNAs) regulate the expression of genes through binding to the corresponding sequences of their target mRNAs. Especially, miRNAs in the cytoplasm can be secreted into body fluids, which called circulating miRNAs, and the availability of circulating miRNAs as biomarkers for hypoxia has been demonstrated in mammals. However, there has been no report on the hypoxia-mediated changes in the circulating miRNAs in fish. miR-210 is known as the representative hypoxia-responsive circulating miRNA in mammals. To know whether fish miR-210 also respond to hypoxia, we analyzed the change of circulating miR-210 quantity in the serum of olive flounder (Paralichthys olivaceus) in response to hypoxia. The expression of hypoxia related genes, hypoxia inducible factor 1α (HIF-1α) and the heat shock protein 90α (HSP90α) was also analyzed. Similar to the reports from mammals, miR-210-5p and miR-210-3p were significantly increased in the serum of olive flounder in response to hypoxia, suggesting that circulating miR-210 levels in the serum can be used as a noninvasive prognostic biomarker for fish suffered hypoxia. The target genes of miR-210 were related to various biological processes, which explains the major regulatory role of miR-210 in response to hypoxia. The expression of HIF-1α and HSP90α in the tissues was also up-regulated by hypoxia. Considering the critical role of HIF-1α in miR-210 expression and HSP90 in miRNAs function, the present up-regulation of HIF-1α and HSP90α might be related to the increase of circulatory miR-210, and the interaction mechanism among HIF-1α, HSP90α, and hypoxia-responsive microRNAs in fish should be further studied.

Circulating microRNA expression profiling in young obese Korean women

  • Choi, Won Hee;Ahn, Jiyun;Um, Min Young;Jung, Chang Hwa;Jung, Sung Eun;Ha, Tae Youl
    • Nutrition Research and Practice
    • /
    • v.14 no.4
    • /
    • pp.412-422
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: This study investigates correlations between circulating microRNAs (miRNAs) and obesity-related parameters among young women (aged 20-30 years old) in Korea. SUBJECTS/METHODS: We analyzed TaqMan low density arrays (TLDAs) of circulating miRNAs in 9 lean (body mass index [BMI] < 25 kg/㎡) and 15 obese (BMI > 25 kg/㎡) women. We also performed gene ontology (GO) analyses of the biological functions of predicted miRNA target genes, and clustered the results using the database for annotation, visualization and integrated discovery. RESULTS: The TLDA cards contain 754 human miRNAs; of these, the levels of 8 circulating miRNAs significantly declined (> 2-fold) in obese subjects compared with those in lean subjects, including miR-1227, miR-144-5p, miR-192, miR-320, miR-320b, miR-484, miR-324-3p, and miR-378. Among them, miR-484 and miR-378 displayed the most significant inverse correlations with BMI (miR-484, r = -0.5484, P = 0.0056; miR-378, r = -0.5538, P = 0.0050) and visceral fat content (miR-484, r = -0.6141, P = 0.0014; miR-378, r = -0.6090, P = 0.0017). GO analysis indicated that genes targeted by miR-484 and miR-378 had major roles in carbohydrate and lipid metabolism. CONCLUSION: Our result showed the differentially expressed circulating miRNAs in obese subjects compared to lean subjects. Although the mechanistic study to reveal the causal role of miRNAs remains, these miRNAs may be novel biomarkers for obesity.

The Role of MicroRNAs in Regulatory T Cells and in the Immune Response

  • Ha, Tai-You
    • IMMUNE NETWORK
    • /
    • v.11 no.1
    • /
    • pp.11-41
    • /
    • 2011
  • The discovery of microRNA (miRNA) is one of the major scientific breakthroughs in recent years and has revolutionized current cell biology and medical science. miRNAs are small (19~25nt) noncoding RNA molecules that post-transcriptionally regulate gene expression by targeting the 3' untranslated region (3'UTR) of specific messenger RNAs (mRNAs) for degradation of translation repression. Genetic ablation of the miRNA machinery, as well as loss or degradation of certain individual miRNAs, severely compromises immune development and response, and can lead to immune disorders. Several sophisticated regulatory mechanisms are used to maintain immune homeostasis. Regulatory T (Treg) cells are essential for maintaining peripheral tolerance, preventing autoimmune diseases and limiting chronic inflammatory diseases. Recent publications have provided compelling evidence that miRNAs are highly expressed in Treg cells, that the expression of Foxp3 is controlled by miRNAs and that a range of miRNAs are involved in the regulation of immunity. A large number of studies have reported links between alterations of miRNA homeostasis and pathological conditions such as cancer, cardiovascular disease and diabetes, as well as psychiatric and neurological diseases. Although it is still unclear how miRNA controls Treg cell development and function, recent studies certainly indicate that this topic will be the subject of further research. The specific circulating miRNA species may also be useful for the diagnosis, classification, prognosis of diseases and prediction of the therapeutic response. An explosive literature has focussed on the role of miRNA. In this review, I briefly summarize the current studies about the role of miRNAs in Treg cells and in the regulation of the innate and adaptive immune response. I also review the explosive current studies about clinical application of miRNA.