• Title/Summary/Keyword: Micro-sphere

Search Result 70, Processing Time 0.019 seconds

miR-5191 functions as a tumor suppressor by targeting RPS6KB1 in colorectal cancer

  • HYUN-JU AN;MISUN PARK;JOON KIM;YOUNG-HOON HAN
    • International Journal of Oncology
    • /
    • v.55 no.4
    • /
    • pp.960-972
    • /
    • 2019
  • MicroRNAs (miRNAs/miRs) are a class of small non-coding RNAs that play pivotal roles in cancer physiology as important epigenetic regulators of gene expression. Several miRNAs have been previously discovered that regulate the proliferation of the colorectal cancer (CRC) cell line HCT116. In the present study, one of these miRNAs, miR-5191, was characterized as a tumor suppressor in CRC cells. Transfection with miR-5191 led to a significant decrease in cell proliferation, invasiveness, tumor sphere-forming ability and tumor organoid growth, as determined via trypan blue, Transwell, sphere culture and organoid culture assays, respectively. Flow cytometric analyses revealed that miR-5191 induced the cell cycle arrest and apoptosis of CRC cells. Additionally, the expression of miR-5191 was downregulated in CRC tumor tissues compared with in normal tissues, as measured by reverse transcription-quantitative PCR analysis. Ribosomal protein S6 kinase β1 (RPS6KB1) was identified as a direct target of miR-5191. Ectopic expression of RPS6KB1 suppressed the function of miR-5191. Intratumoral injection of miR-5191 mimic suppressed tumor growth in HCT116 xenografts. These findings suggested a novel tumor-suppressive function for miR-5191 in CRC, and its potential applicability for the development of anticancer miRNA therapeutics.

Synthesis of Thin Film Type Cu/ZnO Nanostructure Catalysts for Development of Methanol Micro Reforming System (마이크로 개질기 개발을 위한 박막형 Cu/ZnO 나노구조 촉매 합성)

  • Yeo, Chan Hyuk;Kim, Yeon Su;Im, Yeon Ho
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.3
    • /
    • pp.193-199
    • /
    • 2013
  • In this work, thin film type Cu/ZnO nanostructure catalysts were fabricated by several synthetic routes in order to maximize the performance of the micro reforming system. For this work, various Cu/ZnO nanostructure catalysts could be synthesized by means of four approaches which are chemical vapor method, wet solution method and their hybrid method. The reforming performance of these as-synthetic catalysts was evaluated as compared to the conventional catalysts. Among the as-synthetic nanostructures, sphere type catalysts with specific surface of $18.6m^2/g$ showed the best performance of hydrogen production rate of 30ml/min at the feed rate of 0.2ml/min. This work will give the first insight on thin film type Cu/ZnO nanostructure catalyst for micro reforming system for hydrogen production of portable electronic systems.

Preparation of Micro-spherical Activated Carbon with Meso-porous Structure for the Electrode Materials of Electric Double Layer Capacitor (전기이중층 캐패시터 전극용 meso-pore구조의 미소구형 활성탄소 제조)

  • Um, Eui-Heum;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.396-401
    • /
    • 2009
  • A micro-spherical activated carbon with meso-pore structure of 52~64% and particle diameter of $2{\sim}10{\mu}m$ was prepared for the improvement electrochemical performance of activated carbon as electrode material for electric double layer capacitor. Resorcinol-formaldehyde resin was used as a carbon source in this preparation. According to electrochemical analysis of EDLC using this activated a carbon with showing effects to reduce charge transfer resistance and to increase rate capability, it was found out that micro-spherical activated carbon could be a good method as well as a material for enhancing the performance of electric double layer capacitor.

Study on Frictional Characteristics of Sub-micro Structured Silicon Surfaces (서브 마이크로 구조를 가진 실리콘 표면의 마찰 특성 연구)

  • Han, Ji-Hee;Han, Gue-Bum;Jang, Dong-Yong;Ahn, Hyo-Sok
    • Tribology and Lubricants
    • /
    • v.33 no.3
    • /
    • pp.92-97
    • /
    • 2017
  • The understanding of the friction characteristics of micro-textured surface is of great importance to enhance the tribological properties of nano- and micro-devices. We fabricate rectangular patterns with submicron-scale structures on a Si wafer surface with various pitches and heights by using a focused ion beam (FIB). In addition, we fabricate tilted rectangular patterns to identify the influence of the tilt angle ($45^{\circ}$ and $135^{\circ}$) on friction behaviour. We perform the friction test using lateral force microscopy (LFM) employing a colloidal probe. We fabricate the colloidal probe by attaching a $10{\pm}1-{\mu}m$-diameter borosilicate glass sphere to a tipless silicon cantilever by using a ultraviolet cure adhesive. The applied normal loads range between 200 nN and 1100 nN and the sliding speed was set to $12{\mu}m/s$. The test results show that the friction behavior varied depending on the pitch, height, and tilt angle of the microstructure. The friction forces were relatively lower for narrower and deeper pitches. The comparison of friction force between the sub-micro-structured surfaces and the original Si surface indicate an improvement of the friction property at a low load range. The current study provides a better understanding of the influence of pitch, height, and tilt angle of the microstructure on their tribological properties, enabling the design of sub-micro- and micro-structured Si surfaces to improve their mechanical durability.

A Numerical Simulation for the Propulsion of Axisymmetric Micro-Hydro-Machine by Contractive and Dilative Motion (수축팽창 운동에 의한 축대칭 마이크로-하이드로-머신의 추진을 위한 수치 시뮬레이션)

  • Kim Moon-Chan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.30-37
    • /
    • 2001
  • A Numerical simulation for the propulsion of axisymmetric body by contractive and dilative motion is carried out. The present analysis shows that a propulsive force can be obtained in highly viscous fluid by a contractive and dilative motion of axisymmetric body. An axisymmetric analysis code is developed with unstructured grid system for the simulation of complicated motion and geometry. The developed code is validated by comparing with the results of stokes approximation with the problem of uniform flow past a sphere in low Reynolds number($R_n=1$). The validated code is applied to the simulation of contractive and dilative motion of body. The simulation is extended to the analysis of waving surface with projecting part for finding out the difference of hydrodynamic performance according to the variation of waving surface configuration. The present study will be the basic research for the development of the propulsor of an axisymmetric micro-hydro-machine.

  • PDF

Numerical Analysis on Thermal Transpiration Flows for a Micro Pump (열천이 현상을 이용한 마이크로 펌프내의 희박기체유동 해석)

  • Heo, Joong-Sik;Lee, Jong-Chul;Hwang, Young-Kyu;Kim, Youn-J.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.493-496
    • /
    • 2006
  • Rarefied gas flows through two-dimensional micro channels are studied numerically for the performance optimization of a nanomembrane-based Knudsen compressor. The effects of the wall temperature distributions on the thermal transpiration flow patterns are examined. The flow has a pumping effect, and the mass flow rates through the channel are calculated. The results show that a steady one-way flow is induced for a wide range of the Knudsen number. The DSMC(direct simulation Monte Carlo) method with VHS(variable hard sphere) model and NTC(no time counter) techniques has been applied in this work to obtain numerical solutions.

  • PDF

Fabrication of Scattering Layer for Light Extraction Efficiency of OLEDs (RIE 공정을 이용한 유기발광다이오드의 광 산란층 제작)

  • Bae, Eun Jeong;Jang, Eun Bi;Choi, Geun Su;Seo, Ga Eun;Jang, Seung Mi;Park, Young Wook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.95-102
    • /
    • 2022
  • Since the organic light-emitting diodes (OLEDs) have been widely investigated as next-generation displays, it has been successfully commercialized as a flexible and rollable display. However, there is still wide room and demand to improve the device characteristics such as power efficiency and lifetime. To solve this issue, there has been a wide research effort, and among them, the internal and the external light extraction techniques have been attracted in this research field by its fascinating characteristic of material independence. In this study, a micro-nano composite structured external light extraction layer was demonstrated. A reactive ion etching (RIE) process was performed on the surfaces of hexagonally packed hemisphere micro-lens array (MLA) and randomly distributed sphere diffusing films to form micro-nano composite structures. Random nanostructures of different sizes were fabricated by controlling the processing time of the O2 / CHF3 plasma. The fabricated device using a micro-nano composite external light extraction layer showed 1.38X improved external quantum efficiency compared to the reference device. The results prove that the external light extraction efficiency is improved by applying the micro-nano composite structure on conventional MLA fabricated through a simple process.

Development of the Nanofluidic Filter and Nanopore Micromixer Using Self-Assembly of Nano-Spheres and Surface Tension (나노구체의 자기조립 성질과 표면장력을 이용한 나노유체필터 및 나노포어 마이크로믹서)

  • Seo, Young-Ho;Choi, Doo-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.9
    • /
    • pp.910-914
    • /
    • 2007
  • We present a simple and an inexpensive method for the fabrication of a nano-fluidic filter and a nano-pore micromixer using self-assembly of nano-spheres and surface tension. Colloid-plug was formed by surface tension of liquid in a microchannel to fabricate nanofluidic filter. When colloid is evaporated, nano-spheres in a colloid are orderly stacked by a capillary force. Orderly stacked nano-spheres form 3-D nano-mesh which can be used as a mesh structure of a fluidic filter. We used silica nano-sphere whose diameter is $567{\pm}85nm$, and silicon micro-channel of $50{\mu}m$-diameter. Fabricated nano-fluidic filter in a micro-channel has median pore diameter of 158nm which was in agreement with expected diameter of the nano-pore of $128{\pm}19nm$. A nano-pore micromixer consists of $200\;{\mu}m-wide,\;100\;{\mu}m-deep$ micro-channel and self-assembled nano-spheres. In the nano-pore micromixer, two different fluids had no sooner met together than two fluids begin to mix at wide region. From the experimental study, we completely apply self-assembly of nano-spheres to nano-fluidic devices.

MicroRNA-203 As a Stemness Inhibitor of Glioblastoma Stem Cells

  • Deng, Yifan;Zhu, Gang;Luo, Honghai;Zhao, Shiguang
    • Molecules and Cells
    • /
    • v.39 no.8
    • /
    • pp.619-624
    • /
    • 2016
  • Glioblastoma stem cells (GBM-SCs) are believed to be a subpopulation within all glioblastoma (GBM) cells that are in large part responsible for tumor growth and the high grade of therapeutic resistance that is so characteristic of GBM. MicroRNAs (miR) have been implicated in regulating the expression of oncogenes and tumor suppressor genes in cancer stem cells, including GBM-SCs, and they are a potential target for cancer therapy. In the current study, miR-203 expression was reduced in $CD133^+$ GBM-SCs derived from six human GBM biopsies. MicroRNA-203 transfected GBM-SCs had reduced capacity for self-renewal in the cell sphere assay and increased expression of glial and neuronal differentiation markers. In addition, a reduced proliferation rate and an increased rate of apoptosis were observed. Therefore, miR-203 has the potential to reduce features of stemness, specifically in GBM-SCs, and is a logical target for GBM gene therapy.

Effects of Carbon and Nitrogen Sources on the Shoot Formation in bioreator culture of Scrophularia buergeriana Miquel (현삼에서 탄소원과 질소원의 종류와 농도가 기내 식물체 분화에 미치는 영향)

  • Lim, Wan-Sang;Chae, Young-Am
    • Korean Journal of Medicinal Crop Science
    • /
    • v.8 no.1
    • /
    • pp.9-13
    • /
    • 2000
  • To determine the proper carbon and nitrogen sources and their proper levels for mass micro propagation of Scrophularia buergeriana Miquel, tonic and curing cough experiment were applied and a method for mass cultivation by using bioreactors (2.5 L) was expinined. Proper ratio of $NH_4NO_3\;:\;$KNO_3$ was 413 mg/L : 1900 mg/L for multiple shoot production. Sucrose was more effective than glucose or fractose as carbon source and 3% concentration was good for shoot formation. Total nitrogen was not detected after six weeks both in 500 ml flask and bioreactor culture. Sucrose was decreased sharply after two weeks and there was no sucrose left after three weeks both in 500 ml flask and bioreactor culture. The stirrer in bioreactor caused shear stress to shoots severely. The sphere type bioreactor was better than the cylinder type and removal of inner loop in sphere type was more effective to avoid shear stress.

  • PDF