• 제목/요약/키워드: Micro-sized

검색결과 406건 처리시간 0.029초

고온수전해 수소극용 Cu/YSZ 복합체의 제조 및 미세구조 (Synthesis and Microstructure of Cu/VSZ Composite for High Temperature Electrolysis Cathode)

  • 김종민;정항철;강안수;홍현선
    • 한국수소및신에너지학회논문집
    • /
    • 제18권3호
    • /
    • pp.238-243
    • /
    • 2007
  • The composite powder of Cu and YSZ was synthesized for a high temperature electrolysis cathode by mechanical milling. The average Cu particle size was reduced to 5 micro-meter from 48 micro-meter after the mechanical ball milling. The composite powder showed that Cu particles were uniformly covered with finer YSZ particles. Sub-micron sized pores were uniformly dispersed in the Cu/YSZ composit. Homogeneously-dispersed fine YSZ in the composite is expected to the increase in triple phase boundaries, thereby leading the enhanced performance of cathode.

나노 공정 개발을 위한 기계적 물성 측정 기법 (Measurement Techniques of Mechanical Properties for Development of Nano Fabrication Process)

  • 이학주;최병익;김완두;오충석;한승우;허신;김재현;고순규;안현균
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1104-1110
    • /
    • 2003
  • There are many applications of nanostructures, have been suggested by lots of researchers. It is highly required to measure the properties of nano-sized materials for design and fabrication of the nanostructures. In this paper, several techniques for measuring the mechanical properties of nano-structures are presented laying emphasis on the activity of Nano Property Measurement Team in KIMM. Some advanced applications of nano-indenter are described for measuring elastic, visco-elastic, frictional and adhesive properties as well as the standard methods of it. Micro-tensile test technique with accurate in-plane strain measurement method is also presented and its role in the property measurement of nanostructures is discussed.

  • PDF

Deformation Analysis of Micro-Sized Material Using Strain Gradient Plasticity

  • Byon S.M.;Lee Young-Seog
    • Journal of Mechanical Science and Technology
    • /
    • 제20권5호
    • /
    • pp.621-633
    • /
    • 2006
  • To reflect the size effect of material $(1\sim15{\mu}m)$ during plastic deformation of polycrystalline copper, a constitutive equation which includes the strain gradient plasticity theory and intrinsic material length model is coupled with the finite element analysis and applied to plane strain deformation problem. The method of least square has been used to calculate the strain gradient at each element during deformation and the effect of distributed force on the strain gradient is investigated as well. It shows when material size is less than the intrinsic material length $(1.54{\mu}m)$, its deformation behavior is quite different compared with that computed from the conventional plasticity. The generation of strain gradient is greatly suppressed, but it appears again as the material size increases. Results also reveal that the strain gradient leads to deformation hardening. The distributed force plays a role to amplify the strain gradient distribution.

Non-Destructive Detection of Hertzian Contact Damage in Ceramics

  • Ahn, H.S.;Jahanmir, S.
    • Tribology and Lubricants
    • /
    • 제11권5호
    • /
    • pp.114-121
    • /
    • 1995
  • An ultrasonic technique using normal-incident compressional waves was used to evaluate the surface and subsurface damage in ceramics produced by Hertzian indentation. Damage was produced by a blunt indenter (tungsten carbide ball) in glass-ceramic, green glass and silicon nitride. The damage was classified into two types; (1) Hertzian cone crack, in green glass and fine grain silicon nitride, and (2) distributed subsurface micro fractures, without surface damage, produced in glass ceramic. The ultrasonic technique was successful in detecting cone craks. The measurement results with the Hertzian cone cracks indicated that cracks perpendicular to the surface could be detected by the normal-incident compressional waws. Also shown is the capability of normal-incident compressional waves in detection distributed micro-sized cracks size of subsurface microfractures.

Nanohole Fabrication using FIB, EB and AFM for Biomedical Applications

  • Zhou, Jack;Yang, Guoliang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권4호
    • /
    • pp.18-22
    • /
    • 2006
  • Although many efforts have been made in making nanometer-sized holes, there is still a major challenge in fabricating individual single-digit nanometer holes in a more controllable way for different materials, size distribution and hole shapes. In this paper we describe our efforts to use a top down approach in nanofabrication method to make single-digit nanoholes. There are three major steps towards the fabrication of a single-digit nanohole. 1) Preparing the freestanding thin film by epitaxial deposition and electrochemical etching. 2) Making sub-micro holes ($0.2{\mu}\;to\;0.02{\mu}$) by focused ion beam (FIB), electron beam (EB), atomic force microscope (AFM), and others methods. 3) Reducing the hole size to less than 10 nm by epitaxial deposition, FIB or EB induced deposition and micro coating. Preliminary work has been done on thin films (30 nm in thickness) preparation, sub-micron hole fabrication, and E-beam induced deposition. The results are very promising.

PACS환경에서 디지털유방엑스선 영상 화질에 관한 연구 (The research on Full Field Digital Mammography Image Quality in PACS Environment)

  • 정재호
    • 대한디지털의료영상학회논문지
    • /
    • 제16권2호
    • /
    • pp.25-29
    • /
    • 2014
  • The full-field digital mammography (FFDM), which has been known as a digital breast imaging system, carries out more outstanding performance than the screen-film mammography in overall image quality, skin & nipple, description of pectoral muscle and expression of micro-calcification. Thus, in this thesis, I perform experiments for both the enhancement of image quality and accurate estimation of the result in question, when detecting the very tiny-sized lesions in mammography. The image of digital breast X-rays is the important diagnostic tool for detecting early breast cancer and micro calcification lesion. The experiment of how much compression rate has an effect on the result of diagnosis in the case of microcalcification lesion, with JPEG2000 40:1 compression and over 50% enlargement led to obscure or definitely unacceptable diagnostic results is performed. And in another study of assessment of PSNR degree. I recognized the importance of standardized management system in mammography, where not to mention the accurate reading of the image has the most crucial role in diagnosis

  • PDF

Wet Treatment를 이용한 Nonpolar InGaN/GaN Micro-Column LED Array 개발

  • 공득조;배시영;김기영;이동선
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.395-395
    • /
    • 2013
  • GaN는 LED, 태양전지, 그리고 전자소자 등에 쓰이는 물질로, 관련 연구가 활발히 진행되고 있으며, 이와 더불어 top-down방식을 활용한 소자제작 방법 또한 발달되고 있다. 하지만, 일반적으로 LED 제작에 사용되는 c-plane GaN의 경우, c축 방향으로 발생하는 분극의 영향을 받게되며, 분극은 LED내 양자우물의 밴드를 기울게 하여 전자와 홀의 재결합률을 감소시켜 낮은 내부양자효율을 야기한다. 이러한 문제를 해결하기 위해 여러 가지 방법들이 제시되었으며, 그 중에서도 a면, 혹은 m면과 같은 nonpolar면을 사용하는 GaN LED가 주목받고 있다. 본 연구에서는, top-down방식을 통해 약 $2{\mu}m$ 크기의 diameter를 갖는 micro-sized column LED를 구현하였으며, 식각 후 드러나는 semipolar면을 wet treatment를 통해 제거하여 nonpolar면을 드러나게 하였으며, 이 면에 Ni/Au를 contact하여, 전기적, 광학적 특성을 논하였다. Fig. 1은 I-V 특성 그래프이며, Fig. 2는 EL측정 결과(광학적 특성)이다.

  • PDF

가연성 소재 기반의 에너지 하베스터 연구 (A Research for Piezoelectric Energy Harvesters Based on Flammable Material)

  • 강우석;고중혁
    • 한국전기전자재료학회논문지
    • /
    • 제27권12호
    • /
    • pp.863-865
    • /
    • 2014
  • Energy problem has been issued in worldwide because fossil fuel has being almost exhausted. A lot of renewable energy have been received attention to replace the energy from fossil fuel. Among them, piezoelectric energy harvester is one of excellent candidates. In general, micro scaled small sized energy harvesters were usually based on the lithography process. However, these lithography process require complicated process and high cost. In this paper, a new process has been proposed for micro-scaled piezoelectric energy harvester. $0.2Pb(Mg_{1/3}Nb_{2/3})O_3-0.8Pb(Zr_{0.52}Ti_{0.48})O_3$ composition was used as piezoelectric material due to excellent piezoelectric properties and also can be easily prepared by mixed oxide method.

입자 구형도에 따른 레이저 선가공의 비구형 흄 마이크로 입자 산포 특성 연구 (Dispersion Characteristics of Nonspherical Fume Micro-Particles in Laser Line Machining in Terms of Particle Sphericity)

  • 김경진;박중윤
    • 반도체디스플레이기술학회지
    • /
    • 제21권2호
    • /
    • pp.1-6
    • /
    • 2022
  • This computational investigation of micro-sized particle dispersion concerns the fume particle contamination over target surface in high-precision laser line machining process of semiconductor and display device materials. Employing the random sampling based on probabilistic fume particle generation distributions, the effects of sphericity for nonspherical fume particles are analyzed for the fume particle dispersion and contamination near the laser machining line. The drag coefficient correlation for nonspherical particles in a low Reynolds number regime is selected and utilized for particle trajectory simulations after drag model validation. When compared to the corresponding results by the assumption of spherical fume particles, the sphericity of nonspherical fume particles show much less dispersion and contamination characteristics and it also significantly affects the particle removal rate in a suction air flow patterns.

드론 자율비행 기술 동향 (Survey on Developing Autonomous Micro Aerial Vehicles)

  • 김수성;정성구;차지훈
    • 전자통신동향분석
    • /
    • 제36권2호
    • /
    • pp.1-11
    • /
    • 2021
  • As sensors such as Inertial Measurement Unit, cameras, and Light Detection and Rangings have become cheaper and smaller, research has been actively conducted to implement functions automating micro aerial vehicles such as multirotor type drones. This would fully enable the autonomous flight of drones in the real world without human intervention. In this article, we present a survey of state-of-the-art development on autonomous drones. To build an autonomous drone, the essential components can be classified into pose estimation, environmental perception, and obstacle-free trajectory generation. To describe the trend, we selected three leading research groups-University of Pennsylvania, ETH Zurich, and Carnegie Mellon University-which have demonstrated impressive experiment results on automating drones using their estimation, perception, and trajectory generation techniques. For each group, we summarize the core of their algorithm and describe how they implemented those in such small-sized drones. Finally, we present our up to date research status on developing an autonomous drone.