• Title/Summary/Keyword: Micro-pollutants

Search Result 76, Processing Time 0.031 seconds

Behavior of THM Formation Pormation Potential for Micro-Pollutants Mixed with SBR Effluent in BAC Treatment (활성오니 처리수중에 함유된 미량유기오염물의 생물학적 활성탄 처리시 THM 생성능의 거동)

  • Han, Myung Ho;Kim, Jeong Mog;Huh, Man Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.1
    • /
    • pp.84-98
    • /
    • 2000
  • Control of Trihalomethanes(THMs) is a major concern of many water treatment plants. A number of researchers have studied the effectiveness of activated carbon adsorption process in removing THMs or organic halogen compounds. Recently, attention has been paid to the biological activated carbon (BAC) treatment of THM precursors as an alternative to the carbon adsorption treatment because of its effectiveness as well as its low running cost. In this study, changes of THM formation potential(THMFP) and removal of substrates in the SBR effluent were investigated in an attempt to clarify the mechanisms of the decrease/increase of THMFP in the BAC treatment. The increase and decrease of THMFP concentrations were observed in effluents during prolonged operation. When PCP or DBS was feeded as substrate contained in SBR effluent, the THMFPs were easyly removed with TOCs removal. But the case of SBR effluent containing SDS or glycine was introduced, and when microbial growth came to its near steady state, the THMFPs of treated effluents were increased more or less in comparison to those in the influents. Such increases of THMFP coincided with the increase in microbial growth within the activated carbon fiber(ACF) column. In the case of only sucrose was feeded as substrate on ACF colume, THMFP concentrations of effluent were higher than those of influent. The THMFP concentration was significantly increased on inlet part of ACF column, which biomass inhabits abundantly, then they were decreased gradually. These increases mean production of the secondary THM precursors by biological activities, which can be removed by adsorption and biological degradation on ACF column.

  • PDF

Removal of Total Organic Carbon and Micropollutants in Tertiary Treated Sewage by Medium Pressure UV/H2O2 (중압 자외선과 과산화수소 공정을 이용한 하수 3차 처리수중 총유기탄소와 미량오염물질 제거)

  • Lee, Jai-Yeop;Kim, Ilho
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.4
    • /
    • pp.314-321
    • /
    • 2020
  • This study evaluated the applicability of UV-AOP process using medium-pressure UV lamp and H2O2 to remove TOC and emerging micropollutants in the effluent from a sewage treatment plant. The UV lamp with higher output(1.6~8.0 kW) showed slightly higher amount of power in removing TOC of 1 mg/L(0.09 kWh/mg/L~0.11 kWh/mg/L), however it was found that there was no significant difference for each cases. In addition, under the condition that the H2O2 concentration is sufficient, as the power consumption of the UV lamp increases, the unit TOC removal concentration per unit H2O2 decomposition concentration also increases, resulting in effective removal of TOC. The removal rate of 7 new trace contaminants, such as antibiotics by the UV-AOP tested, was at least 89.4%, and the ability to remove the emerging micro pollutants in the process was very effective. But, it was judged that it could not be excluded that the probablity of transforming to oxidated by-product in the case of a low TOC removal efficiency. Depending on the operating conditions of the UV and H2O2 processes, a higher BOD concentration is found in the treated water than in the influent, and it is necessary to review the UV power and proper injection conditions of H2O2 to maintain the BOD concentration increase below a certain level.

Separation Between Soil Particles and Magnetic Beads by Magnetic Force (자력을 이용한 토양입자와 마이크로자성체의 분리 연구)

  • So, Hyung-Suk;Shin, Hyun-Chul;Yoo, Yeong-Seok
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.76-80
    • /
    • 2005
  • It was evaluated whether magnetic beads able to add the functionality of environment purification can be employed in processing soil pollutants. In this study, the micro scale magnetic beads containing carboxyl groups were mixed with water and the soil $(<0.025{\cal}mm) filtered through a sieve, and then it was agitated before isolating the magnetic substances by the use of outer magnetic force. The factors considered at this step were the ratio of soil to magnetic beads, ratio of soil to water, size of the tube where the reaction occur, and intensity of the magnetic force. From the separation experiment between soil and magnetic beads, it was concluded that the magnetic beads and water quantity have an impact on the degree of separation, yet the size of the tube and magnetic force does not have a considerable effect upon that in this small-scaled experiment. Through this experiment, the reaction conditions were optimized to achieve $90\~100\%$ of separation. Therefore, it was concluded that when the functionalized magnetic beads is introduced to environmental processing, it is able to be adopted to the soil processing as well as the water processing.

A comparative study of micro plastic detection among different pretreatment method (하수처리장 유입수 전처리 방식에 따른 미세플라스틱 검출 비교)

  • Gil, Kyung Ik;Kim, Sung ryul;Lee, Ji Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.422-422
    • /
    • 2021
  • 현대사회에서 플라스틱의 요구량은 꾸준히 증가하고 있으며 이에따라 생산량 역시 맞춰 증가하고 있다. 이에 따라 전세계적으로 플라스틱으로 인해 발생하는 폐기물의 양 역시 증가하고 있으며 이로 인해 플라스틱 재질의 폐기물이 많아지고 있다. 이 중 가장 문제가 되는 폐기물이 바로 미세플라스틱이다. 미세플라스틱은 1㎛ ~ 5mm 미만의 플라스틱으로 그 물리 화학적인 특성으로 인해 회수가 어려우며 외부 환경에 잔류시 독성을 유발할 수 있다. 플라스틱의 약한강도와 열악한 내열성 그리고 유기용매에 취약하다는 단점을 보완하기 위해 첨가하는 화학물질로 인해 내분비계교란물질을 발생시켜 생명체의 내분비계를 교란시켜 최종적으로 성기능장애를 유발한다. 또한 미세플라스틱의 표면은 유기염류성 살충제와 같은 잔류성오염물질(POPs persistent organic pollutants)사이의 흡착성이 크기 때문에 미세플라스틱은 POPs 농도를 주변보다 최대 백만배 높게 만들 수 있다. 미세플라스틱의 분석은 표준화된 방식이 없어서 제각각이지만 대체로 미세플라스틱 표면에 응집된 유기물을 처리하는 전처리, 미세플라스틱의 농도를 분석하는 정량분석, 그리고 미세플라스틱의 성분을 분석하는 정성분석의 과정을 거쳐서 진행된다. 이러한 미세플라스틱의 분석법을 기반으로 하수처리장에 유입되는 하수의 미세플라스틱 분석방법을 제안하면 다음과 같다. 우선 유입수로부터 미세플라스틱을 따로 분리하기 위해 체거름을 진행했다. 이후 유입하수의 성상에 맞는 적정 전처리 방법을 알아내기 위해 유기물을 제거하기 위한 산화방식으롷서 과산화수소수, 80℃의 과산화수소수, 그리고 펜톤산화의 서로 다른 3가지 방식을 사용했다. 이후 이어지는 정량분석과 정성분석결과를 비교하여 유입하수에 가장 최적인 미세플라스틱 측정방법을 알아보고자 한다.

  • PDF

Pollutant Contents with Particle Size Distribution in Bridge Road Drainage Sediment (교량도로 배수받이 퇴적물질의 입경별 오염물질 함량)

  • Lee, Jun-Ho;Cho, Yong-Jin;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.12
    • /
    • pp.1360-1365
    • /
    • 2007
  • The purpose of this study is to present the basic data for nonpoint pollutant loads from bridge road drainage sediments using the results to analyze organic matter and heavy metals from the four bridge drainage sampling sites with sediments of different particle size ranges. The sediment sample was collected from the bridge road drainage and the masses of nine sediments fractions were obtained after drying the separated sediment in an over at $85^{\circ}C:>2,000{\mu}m$, $1,000\sim2,000{\mu}m$, $850\sim1,000{\mu}m$, $425\sim850{\mu}m$, $212\sim425{\mu}m$, $125\sim212{\mu}m$, $90\sim125{\mu}m$, $75\sim90{\mu}m$, $<75{\mu}m$. The sediment extract was analyzed water quality constituents, including chemical oxygen demand(COD), total nitrogen(T-N), total phosphorus(T-P), heavy metals and particle size distribution. The results indicate that most of particle size ranges of the bridge road sediments was $125\sim425{\mu}m$, and portion of $<75{\mu}m$ was low. But most of the pollutants are associated with the finer fractions of the load sediments. As the results of analysis, the range and average values of COD, T-N, T-P, Fe, Cu, Cr, and Pb were $177\sim198.8$ mg/kg(77.6 mg/kg), $23\sim200$ mg/kg(83 mg/kg), T-P $18\sim215$ mg/kg(129 mg/kg), and $1,508\sim5,612$ mg/kg(3,835 mg/kg), $9.2\sim69.3$ mg/kg(49 mg/kg), $19.1\sim662.2$ mg/kg(214 mg/kg), and $28.4\sim251.4$ mg/kg(114 mg/kg), respectively. The relationship between sediment size and pollutants concentration have an inverse proportion. The removal of road sediments with frequently could be reduced the significant nonpoint pollutant load, because of the bridge road sediment contains considerable micro-particles and heavy metals.

A Study on Coagulation Process using Zirconium Silicate as a Coagulation-aid (지르코늄 실리케이트를 응집보조제로 이용한 응집공정에 관한 연구)

  • Cho, Jae-Seung;Yoon, Tai-Il;Jeon, Yu-Jae;Cho, Kyung-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.3
    • /
    • pp.203-207
    • /
    • 2009
  • The concern of seriousness and harmful effects of environmental pollution is rising by the various water pollutions, appearances of new micro-noxious substances and increase of sustainable pollutants. The method is suggested that can effectively increase the removal of organic substances and several pollutants using a coagulation process. The experiment for characteristics of $ZrSiO_4$ (zirconium silicate) as a coagulation-aid was carried out for application to coagulation process with domestic wastewater and lake water, and the removal rate of the organic substances depending on a dosage was evaluated by PDA (Photometric Dispersion Analyzer) in this study. Zeta-potential of zirconium silicate solution was -32.22 mv at pH 7 and the lower negative(-) charge was detected in the more acidic conditions. Absorbance on $UV_{254}$ presented higher when zirconium silicate was added than in a domestic wastewater itself. Besides, the results by PDA experiment represented that injection of zirconium silicate could promote growing of floc. Tests for coagulation process were conducted by three ways which are pre-injection, co-injection and post-injection of zirconium silicate with alum. Accordingly, removal efficiency of organic substances increased over 15% in co-injection than in using of alum as a sole reagent. When a 20 mg/L of alum was used with a 10 mg/L of zirconium silicate, the removal efficiency was high up to 90%. Removal efficiency of $COD_{Cr}$ was improved more than 15% in case of dosage of coagulant either PAC (Poly aluminium chloride) or PACS (Poly aluminium chloride Silicate) together with zirconium silicate. As a result, the removal efficiency of $COD_{Cr}$ were 5~10% higher in a co-injection of zirconium silicate with a coagulant than a pre-injection and a post-injection but it of soluble substances was lower in a co-injection.

Water Quality Variation and Removal Characteristics of Poliovirus by Biological Activated Carbon (BAC) and Ozone Treatment Process in Nakdong River. (낙동강 원수의 생물활성탄 및 오존처리공정에 따른 수질 변화 및 폴리오바이러스의 제거특성)

  • Jung Eun-Young;Park Hong-Ki;Lee You-Jung;Jung Jong-moon;Jung Mi-Eun;Hong Yong-Ki;Jang Kyoung-Lib
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.696-702
    • /
    • 2005
  • Ozonation is a disinfection technique of harmful mi-crobes commonly used in the treatment of drinking water. And Biological Activated Carbon (BAC) treatment also provides numerous benefits for drinking water utilities, including removal of micro- pollutants, improved treatment processes. The multiful-stage ozonation and BAC play roles as effective methods for removing several materials in raw water. Water quality variation in Nak dong river and the removal efficiency of viruses by ozonation-BAC process were investigated on pilot scale. During the period of survey, most of water quality parameters including $NH_{4}^{+}-N$ were highly improved after passing through the BAC. The removal efficiency of poliovirus type III in water treatment process using pilot-plant,$ 99.6\% $ of viruses were removed by pre-ozonation, sedimentation and sand filteration process, $ 100\% $ were removed after in BAC filteration step. In the removal survey of viruses by ozonation, ap-proximately $ 61.1\% $ or polioviruses were inactivated by ozone of 0.4 mg/l within 5 min. and $ 100\% $ were inactivated by ozone of 0.8 mg/l over 10 min.

Field Applicability Evaluation Using Effective Microorganism Brewing Cycle for Contaminated Soil in Water Retention Basin (복합발효미생물을 이용한 하천유수지 오염토의 현장적용성 평가)

  • Shin, Eunchul;Jung, Minkyo;Kim, Kyeongsig;Kang, Jeongku
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.11
    • /
    • pp.35-43
    • /
    • 2016
  • In this study, by using a Effective Microorganisms Brewing Cycle, it confirmed the purification effect of pollutants that are adsorbed on the basins stench removal and retarding soil. On the basis of on-site application test, a soil decontamination system will be suggested. Using a Effective Microorganisms Brewing Cycle, the odor concentration is reduced 2.5 times than that of natural purification treatment method. It was measured and found that the quality of the pore water discharged from the soil is improved. In addition, it was found that a composite of copper and lead with the fermentation microorganisms adsorbed on soil particles from the surface of the stirred experiments lagoon mixed soil is reduced to 65% and 66%, respectively, The TPH organic component was confirmed that the reduction effect of 85%. Restoration of reservoir contaminated soils using the effective microorganism brewing cycle needs to be more developed and implemented as a long-term purification system. This study may be a good reference of developing more complete microorganism brewing system which will efficiently reduce the odor and soil contamination based on optimal stirring and mixing ratio of the compound solutions and contaminated soils in reservoir.

Exposure and Toxicity Assessment of Ultrafine Particles from Nearby Traffic in Urban Air in Seoul, Korea

  • Yang, Ji-Yeon;Kim, Jin-Yong;Jang, Ji-Young;Lee, Gun-Woo;Kim, Soo-Hwan;Shin, Dong-Chun;Lim, Young-Wook
    • Environmental Analysis Health and Toxicology
    • /
    • v.28
    • /
    • pp.7.1-7.9
    • /
    • 2013
  • Objectives We investigated the particle mass size distribution and chemical properties of air pollution particulate matter (PM) in the urban area and its capacity to induce cytotoxicity in human bronchial epithelial (BEAS-2B) cells. Methods To characterize the mass size distributions and chemical concentrations associated with urban PM, PM samples were collected by a 10-stage Micro-Orifice Uniform Deposit Impactor close to nearby traffic in an urban area from December 2007 to December 2009. PM samples for in vitro cytotoxicity testing were collected by a mini-volume air sampler with $PM_{10}$ and $PM_{2.5}$ inlets. Results The PM size distributions were bi-modal, peaking at 0.18 to 0.32 and 1.8 to $3.2{\mu}m$. The mass concentrations of the metals in fine particles (0.1 to $1.8{\mu}m$) accounted for 45.6 to 80.4% of the mass concentrations of metals in $PM_{10}$. The mass proportions of fine particles of the pollutants related to traffic emission, lead (80.4%), cadmium (69.0%), and chromium (63.8%) were higher than those of other metals. Iron was the dominant transition metal in the particles, accounting for 64.3% of the $PM_{10}$ mass in all the samples. We observed PM concentration-dependent cytotoxic effects on BEAS-2B cells. Conclusions We found that exposure to $PM_{2.5}$ and $PM_{10}$ from a nearby traffic area induced significant increases in protein expression of inflammatory cytokines (IL-6 and IL-8). The cell death rate and release of cytokines in response to the $PM_{2.5}$ treatment were higher than those with $PM_{10}$. The combined results support the hypothesis that ultrafine particles from vehicular sources can induce inflammatory responses related to environmental respiratory injury.

Characteristics of Disinfection and Removal of 2-MIB Using Pulse UV Lamp (펄스 UV 램프를 이용한 미생물 소독 및 2-MIB 제거 특성)

  • Ahn, Young-Seog;Yang, Dong-Jin;Chae, Seon-Ha;Lim, Jae-Lim;Lee, Kyung-Hyuk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.69-75
    • /
    • 2009
  • The characteristics of disinfection and organic removal were investigated with pulse UV lamp in this study. The intensity and emission wavelength of pulse UV Lamp were compared with low pressure UV lamp. The emission spectrum range of pulse UV lamp was between 200 and 400 nm while the emission spectrum of low pressure UV lamp was only single wavelength of 254nm. 3 Log inactivation rate of B. subtilis spore by pulse UV and low pressure UV irradiation was determined as $44.71mJ/cm^2$ and $57.7mJ/cm^2$, respectively. This results implied that wide range of emission spectrum is more effective compared to single wavelength emission at 254nm. 500ng/L of initial 2-MIB concentration was investigated on the removal efficiency by UV only and $UV/H_2O_2$ process. The removal efficiency of UV only process achieved approximately 80% at $8,600mJ/cm^2$ dose. 2-MIB removal rate of $UV/H_2O_2$ (5 mg/L $H_2O_2$) process was 25 times increased compared to UV only process. DOC removal efficiency for the water treatment plant effluent was examined. The removal efficiency of DOC by UV and $UV/H_2O_2$ was no more than 20%. Removal efficiency of THMFP(Trihalomethane Formation Potential), one of the chlorination disinfection by-products, is determined on the UV irradiation and $UV/H_2O_2$ process. Maximum removal efficiency of THMFP was approximately 23%. This result indicates that more stable chemical structures of NOM(Natural Organic Matter) than low molecule compounds such as 2-MIB, hydrogen peroxide and other pollutants affect low removal efficiency for UV photolysis. Consequently, pulse UV lamp is more efficient compared to low pressure lamp in terms of disinfection due to it's broad wavelength emission of UV. Additional effect of pulse UV is to take place the reactions of both direct photolysis to remove micro organics and disinfection simultaneously. It is also expected that hydrogen peroxide enable to enhance the oxidation efficiency on the pulse UV irradiation due to formation of OH radical.