• Title/Summary/Keyword: Micro-pile

Search Result 40, Processing Time 0.031 seconds

Installation Methods of Micro-piles by the Length Ratio of Pile and the Depth of Rock Layer (파일길이비와 암반층의 위치에 따른 마이크로파일 설치방법)

  • Hwang, Tae-Hyun;Kwon, Oh-Yeob
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.4
    • /
    • pp.5-20
    • /
    • 2011
  • A numerical analysis has been conducted to propose the effective installation methods of Micro-pile in a sandy soil or a soil with rock layer. As a result, the bearing capacity of reinforced soil by rigid Micro-pile has influence on a connection state of the tip of pile and surface of rock layer. But that by flexible Micro-pile has more influence on a penetration length of pile than the connection state of the tip of pile and surface of rock layer.

A Study of Micro-piles Method combined with the Resisting Fixture interacting the power of frictional resistance in a contrary direction (양방향 저항체를 결합한 마이크로파일공법 연구)

  • Baik, Dong-Ho;Lee, Sang-Moo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.74-75
    • /
    • 2014
  • In remodeling business or construction of both new strucures and existing structures, Case that pile foundation was set is often. Micro pile, holding compressive force and tensile force by spherical friction, is supported by skin friction rather than end bearing capacity. but, This is weak in tension. Active area of micro pile's skin friction is narrow and micro pile don't do unification behavior hence. So bearing capacity was not fully mobilized in existing researching. In this study, in order to compensate for this method, micro pile to install Resisting Fixture is proposed.

  • PDF

Numerical analyses on the effects of micro pile installation beneath slab tracks (슬래브궤도 하부의 마이크로파일 설치효과 수치해석)

  • Lee Su-Hyung;Kim Dae-Sang;Lee Il-Wha;Chung Choong-Ki
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.922-927
    • /
    • 2004
  • The bending moment and settlement of the slab track can be reduced by the installation of small numbers of micro piles beneath the track. This paper presents the effect of micro pile installation on the reduction of bending moment and settlement of slab track, estimated by a numerical method. The slab track is modeled as a plate based on the Mindlin's plate theory, and soil and piles are modeled as Winkler and coupled springs, respectively. The stiffness of piles is obtained by the approximate analytical method proposed by Randolph and Wroth. and the modulus of subgrade reaction is adopted to evaluate Winkler spring constant. From the analysis results, the effect of the micro pile installation is significant to considerably reduce the settlement of slab track. However, for the proper reduction of bending moments in a slab track, the pile arrangement should be reasonably taken into account to prevent the stress concentration at pile location.

  • PDF

Reinforcing Efficiency of Micro-Pile with Precast Retaining Wall (프리캐스트 옹벽 마이크로 파일의 보강 효율)

  • Moon, Changyeul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.7
    • /
    • pp.61-71
    • /
    • 2008
  • This study investigates the lateral resistance of micro-pile system when surcharge load is acting on the back of retaining wall. Both laboratory experiments and numerical analysis were performed. The experimental retaining wall model was developed on the laboratory-sized foundation. While surcharge load was acting, the interval and length varied as experimental variables. From the investigation it is known that the micro-pile system can effectively control the lateral displacement which is developed on the precast retaining wall. The effectiveness became increased as the pile interval reduced and the length of pile increased. The greatest reinforcing efficiency was shown when the pile length was 0.5H and the interval was 7D.

  • PDF

The Effects of the Breadth of Foundation and Rock Layer on the Installation Method of Micro-piles (기초 폭 및 암반층의 영향을 고려한 마이크로파일 설치방안에 관한 연구)

  • Hwang, Tae-Hyun;Kim, Ji-Ho;Kwon, Oh-Yeob
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.6
    • /
    • pp.29-38
    • /
    • 2010
  • Micro-piles have been used to increase the bearing capacity or to restrain settlement of existing shallow foundation. Recently, micro-piles are used to support the shallow foundation, to stabilize the slope and to resist the sliding of retaining wall. Using the micro-piles in geotechnical engineering, some investigators have studied the effective installing method by model test or field test. But most of previous studies are chiefly focused on the micro-piles in sand or clay layer. If a rock layer exists in soil, the installing length of micro-piles may be determined by the depth of rock layer. In this case, the stiffness of pile may be changed by the installing length of pile, and so the installing method has to be altered by the changed stiffness of pile. Model tests have been conducted to study the installation method of micro-pile in soil with rock layer. As a result, when the ratio of length of pile is below 50 ($L/d{\leq}50$), installing of micro-piles in vertical position is effective regardless of the depth of rock layer. If the depth of rock layer is deeper than soil failure zone and the ratio of the length of pile exceeds 50 (L/d>50), installing of the micro-piles in sloped position is effective.

Installation of Micro-piles Appropriate to Soil Conditions (지반조건에 따른 마이크로파일 설치방법에 관한 연구)

  • Hwang, Tae-Hyun;Mun, Kyeong-Ryeon;Shin, Yong-Suk;Kwon, Oh-Yeob
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.55-65
    • /
    • 2012
  • This study performs model test to propose the installation method of micro-pile appropriate to various soil conditions such as sand or silt soil. As a result, the crossed installation method (${\theta}$ < $0^{\circ}$) of micro-pile is effective in resisting a compression displacement of soil in the case of silt exhibiting the punching shear failure. And the inclined installation method (${\theta}$ > $0^{\circ}$ or ${\theta}$ < $0^{\circ}$) of micro-pile is effective in resisting a lateral displacement of soil in the case of sand to exhibiting the general or local shear failure.

Reinforcement for Bearing Capacity of PRD Steel Pile at Mudstone Area (이암지역에 근입된 PRD강관말뚝의 지지력 보강)

  • Kong, Jin-Young;Kang, Hee-Jin;Chun, Byung-Sik
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1760-1769
    • /
    • 2007
  • The cut slope sliding which has been frequently encountered in Pohang area has been reported due to the rapid reduction of shear strength in mudstone after being exposed to the air. Mudstone has characteristics that it has high enough strength and stiffness in a dry condition, but the strength and stiffness decrease in a wet condition with groundwater infiltration. The case study in this paper shows that mudstone which had enough strength in a boring stage has lost the strength after installing PRD steel pipe pile inducing an insufficient bearing capacity, which has been ascertained by the static load test. Test construction has been performed to investigate the most favorable method for increasing a pile bearing capacity in mudstone with various methods such as MSG (Micro Silica Grouting) around the tip and side of a pile, the perimeter grouting combined with Micro pile reinforcement, and concrete filling after tip reinforcing grouting. From the test construction, MSG has been turned out to be the most favorable method for increasing a pile bearing capacity in mudstone, which has been confirmed by the static load test.

  • PDF

Reliability analysis of soil slope reinforced by micro-pile considering spatial variability of soil strength parameters

  • Yuke Wang;Haiwei Shang;Yukuai Wan;Xiang Yu
    • Geomechanics and Engineering
    • /
    • v.36 no.6
    • /
    • pp.631-640
    • /
    • 2024
  • In the traditional slope stability analysis, ignoring the spatial variability of slope soil will lead to inaccurate analysis. In this paper, the K-L series expansion method is adopted to simulate random field of soil strength parameters. Based on Random Limit Equilibrium Method (RLEM), the influence of variation coefficient and fluctuation range on reliability of soil slope supported by micro-pile is investigated. The results show that the fluctuation ranges and the variation coefficients significantly influence the failure probability of soil slope supported by micro-pile. With the increase of fluctuation range of soil strength parameters, the mean safety factor of the slope increases slightly. The failure probability of the soil slope increases with the increase of fluctuation range when the mean safety factor of the slope is greater than 1. The failure probability of the slope increases by nearly 8.5% when the fluctuation range is increased from δv=2 m to δv =8 m. With the increase of the variation coefficient of soil strength parameters, the mean safety factor of the slope decreases slightly, and the probability of failure of soil slope increases accordingly. The failure probability of the slope increases by nearly 31% when the variation coefficient increases from COVc=0.2, COVφ=0.05 to COVc=0.5, COVφ=0.2.