• Title/Summary/Keyword: Micro-lens arrays

검색결과 16건 처리시간 0.025초

Fabrication of Large-area Micro-lens Arrays with Fast Tool Control

  • Noh, Young-Jin;Arai, Yoshikazu;Tano, Makoto;Gao, Wei
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권4호
    • /
    • pp.32-38
    • /
    • 2008
  • This paper describes a fast tool control (FTC)-based diamond turning process for fabricating large-area high-quality micro-lens arrays. The developed FTC unit has a stroke of $48{\mu}m$ and a resonance frequency of 4.9 kHz. Micro-lens arrays were fabricated using a micro-cutting tool with a nose radius of $50{\mu}m$. The FTC unit was integrated with a force sensor so that the initial position of the micro-cutting tool with respect to the workpiece surface could be detected through monitoring the contacting force. The length and depth of the designed parabolic micro-lens profile were $190{\mu}m$ and $20{\mu}m$, respectively. A micro-lens array was fabricated on a cylinder surface over an area of ${\phi}55 mm{\times}40 mm$.

그레이스케일 마스크를 이용한 미소렌즈 배열의 제작 (Fabrication of micro-lens arrays using a grayscale mask)

  • 조두진;성승훈
    • 한국광학회지
    • /
    • 제13권2호
    • /
    • pp.117-122
    • /
    • 2002
  • 홀로그래픽 필름으로 제작된 그레이스케일 마스크를 통하여 두꺼운 포토레지스트를 자외선으로 근접 노광하여 주기 300 $\mu\textrm{m}$, 두께 17 $\mu\textrm{m}$, 초점거리 2.2 mm인 10$\times$10 미소렌즈 배열을 제작하였다. 그레이스케일 마스크는 컴퓨터로 설계한 미소렌즈 배열을 필름 출력기를 이용하여 고해상도 흑백 필름에 그레이스케일로 기록 및 현상하고 이를 다시 홀로그래픽 필름에 축소복사(6.6배)하여 제작하였다. 본 제작방법은 저렴한 비용으로 100%에 가까운 fill-factor를 얻을 수 있고, 비구면 렌즈를 구현하기가 쉽다는 장점을 가진다.

MLA(Micro Lens Array) 제작을 위한 광학 시뮬레이션 (The beam property simulation for the fabrication of a MLA(Micro Lens Array))

  • 오해관;서현우;김근영;위창현;송요탁;이기근;양상식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1497_1498
    • /
    • 2009
  • This paper presents the simulation of micro-lens arrays based on dry and wet etching technique. Code V (Optical Research Associates Ltd) simulation was performed to extract optimal design parameters of a Micro-Lens Array(MLA). Thickness of UV adhesive, wavelength of laser source, curvature, and shape of lens surface were chosen for the design parameters. The simulation results showed that focal length of a MLA decreased with the increase of UV adhesive thickness. And the focal length depended on shape of lens surface and length of laser source.

  • PDF

Fabricating a Micro-Lens Array Using a Laser-Induced 3D Nanopattern Followed by Wet Etching and CO2 Laser Polishing

  • Seung-Sik Ham;Chang-Hwam Kim;Soo-Ho Choi;Jong-Hoon Lee;Ho Lee
    • 한국산업융합학회 논문집
    • /
    • 제26권4_1호
    • /
    • pp.517-527
    • /
    • 2023
  • Many techniques have been proposed and investigated for microlens array manufacturing in three-dimensional (3D) structures. We present fabricating a microlens array using selective laser etching and a CO2 laser. The femtosecond laser was employed to produce multiple micro-cracks that comprise the predesigned 3D structure. Subsequently, the wet etching process with a KOH solution was used to produce the primary microlens array structures. To polish the nonoptical surface to the optical surface, we performed reflow postprocessing using a CO2 laser. We confirmed that the micro lens array can be manufactured in three primary shapes (cone, pyramid and hemisphere). Compared to our previous study, the processing time required for laser processing was reduced from approximately 1 hour to less than 30 seconds using the proposed processing method. Therefore, micro lens arrays can be manufactured using our processing method and can be applied to mass productionon large surface areas.

CCD를 이용한 미세렌즈의 MTF 측정 (CCD Scanning type MTF Measuring System for Microlens Arrays)

  • 이윤우;조현모;이인원;박태호;윤성균;서형원
    • 한국광학회지
    • /
    • 제5권3호
    • /
    • pp.364-371
    • /
    • 1994
  • 미세렌즈 배열의 실시간 분해능 평가를 위하여 CCD를 이용한 MTF 측정장치를 제작하였다. 현미경 대물렌즈로 상을 확대한 후 CCD를 사용하여 직접 광세기 분포함수를 측정하였으며 사용된 CCD의 화소 크기와 간격, 그리고 감도의 균질성 등을 고려하여 측정한 MTF를 보정하였다. 마이크로 컴퓨터를 사용하여 측정자동화 하였으며 자세한 보정방법과 측정장치에 대하여 설명하였다.

  • PDF

미세압축성형을 통한 플라스틱 미세렌즈의 성형 (Fabrication of micro lens array using micro-compression molding)

  • 문수동;강신일;이영주;부종욱
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.743-746
    • /
    • 2000
  • Plastic microlenses play an important role in reducing the size, weight, and the cost of the systems in the fields of optical data storage and optical communication. In the present study, plastic microlens arrays were fabricated using micro-compression molding process. The design and fabrication procedures for mold insert were simplified by using silicon instead of metal. A simple but effective micro compression molding process, which uses polymer powder, were developed for microlens fabrication. The governing process parameters were temperature and pressure histories and the micromolding process was controlled such that the various defects developing during molding process were minimized. The radius and magnification ratio of the fabricated microlens were $125{\mu}m$ and over 3.0, respectively.

  • PDF

미세압축성형을 통한 플라스틱 미세렌즈의 성형 (Fabrication of Micro Lens Array Using Micro-Compression Molding)

  • 강신일;문수동;이영주;부종욱
    • 대한기계학회논문집A
    • /
    • 제25권8호
    • /
    • pp.1242-1245
    • /
    • 2001
  • Plastic microlenses play an important role in reducing the size, weight, and the cost of the systems in the fields of optical data storage and optical communication. In the present study, plastic microlens arrays were fabricated using micro-compression molding process. The design and fabrication procedures for mold insert were simplified by using silicon instead of metal. A simple but effective micro compression molding process, which uses polymer powder, were developed for microlens fabrication. The governing process parameters were temperature and pressure histories and the micromolding process was controlled such that the various defects developing during molding process were minimized. The radius and magnification ratio of the fabricated microlens were 125$\mu\textrm{m}$ and over 3.0, respectively.

Fabrication and Modeling of Microlens Array by a Modified LIGA Process

  • Kim Dong Sung;Lee Hyun Sup;Yang Sang Sik;Lee Bong-Kee;Lee Sung-Keun;Kwon Tai Hun;Lee Seung S.
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The Korea-Japan Plastics Processing Joint Seminar
    • /
    • pp.7-13
    • /
    • 2003
  • Microlens arrays were fabricated using a novel fabrication technology based on the exposure of a PMMA (Polymethylmethacrylate) sheet to deep X-rays and subsequent thermal treatment. X-ray irradiation causes the decrease of molecular weight of PMMA, which in turn decreases the glass transition temperature and consequently causes a net volume increase during the thermal cycle resulting in a swollen microlens. A new physical modeling and analyses for micro lens formation were presented according to experimental procedure. A simple analysis based on the new model is found to be capable of predicting the shapes of micro lens which depend on the thermal treatment. For the replication of micro lens arrays having various diameters with different foci on the same surface, the hot embossing and the microinjection molding processes has been successfully utilized with a mold insert that is fabricated by Ni-electroplating based on a PMMA microstructure of micro lenses. Fabricated microlenses showed good surface roughness with the order of 1nm.

  • PDF

Micro-molding of microlens array using electroformed mold insert

  • LEE NAMSUK;MOON SU-DONG;KANG SHINILL
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The Korea-Japan Plastics Processing Joint Seminar
    • /
    • pp.15-19
    • /
    • 2003
  • Polymeric micro lens arrays with diameters of $13\~96\;{\mu}m$ fabricated using the micro-compression molding with electro formed mold inserts. In the present study, the electro forming process was used to make the metallic micro-mold insert for micro-molding of microlens array. The wettability property of the fabricated mold insert was examined by measuring the contact angle of the polymer melt on the mold insert. Microlenses were compression-molded with the fabricated mold insert. The effects of the molding temperature and wettability property on the replication quality of the molded lenses were analyzed experimentally.

  • PDF