• 제목/요약/키워드: Micro-holes

검색결과 180건 처리시간 0.029초

상압 마이크로 글로우 방전 분사 소자 (Atmospheric Micro Glow Plasma-jet Device)

  • 김강일;홍용철;김근영;양상식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1533_1534
    • /
    • 2009
  • This paper presents an atmospheric micro glow plasma-jet device. The device consists of four components; a thin Ni anode, a porous alumina insulater, a stainless steel cathode and an aluminum case. The Ni anode is fabricated using micromachining technology. The anode has 10 holes, of which the hole diameter and the depth are $250{\mu}m$ and $60{\mu}m$, respectively. The discharge test is performed in nitrogen gas at atmospheric pressure for 20 kHz AC bias. The breakdown voltage is 3.5 kV at gas flow rate of 4 L/min and the the plasma-jet is blown out to ambient at 5.5 kV. In order to verify the characteristics of plasma, the current and the voltage of device are measured. The maximum temperature of plasma is $37^{\circ}C$. The plasma is well generated and stable at high voltage.

  • PDF

증기화 증폭시트를 적용한 전자빔 가공 특성 연구 (A study on machining characteristics in vaporized amplification sheets of electron beam)

  • 김성현;정성택;김현정;백승엽
    • Design & Manufacturing
    • /
    • 제12권2호
    • /
    • pp.46-50
    • /
    • 2018
  • Recently, as machine components and products are getting smaller, it is demanded to develop superprecision production technologies multilaterally. Along with the advancement of production technology, people are paying keener attention to the development of eco-friendly technology and efficient processing technology. Particularly, in many industries related to automobiles, shipbuilding, or airplane components, it is demanded to obtain technology to process multiple micro-holes. On account of this trend, micro-hole processing employing high-power electron beams is rising nowadays, and more interest is being shown in it, too. In Korea, however, the process of manufacturing vaporized amplification sheets influencing high-power electron beam processing technology and the processability considerably has not been developed sufficiently yet. Therefore, this study has applied vaporized amplification sheets manufactured to analyze the processability of high-power electron beams and examine necessity for vaporized amplification sheets.

불산대체용액을 이용한 유리의 초음파 가공 (Chemical-assisted Ultrasonic Machining of Glass by Using HF Substitute Solution)

  • 전성건;남권선;김병희;김헌영;전병희
    • 소성∙가공
    • /
    • 제13권3호
    • /
    • pp.262-267
    • /
    • 2004
  • Ultrasonic machining has been known as one of the conventional machining methods in the glass fabrication processes. In ultrasonic machining, typically, glass is removed by the impulse energy of the abrasive generated by the ultrasonic power. However, when the machining feature decrease under hundreds of micrometers, as conventional ultrasonic machining uses only the impulse energy of the abrasive, the speed of ultrasonic machining decreases significantly and the surface roughness becomes deteriorated. To overcome this size effect, the chemicals which can erode glasses, such as HF, XF, etc, are added to the slurry. The chemical-assisted ultrasonic machining method, so called, is another alternating effective way for micro machining of glasses. In previous work, we used the hydrofluoric acid (HF) as an additive chemical. But, as the HF solution is too poisonous to be used as a ultrasonic process additive, it is needed to be substituted by other safe chemicals. As results of the machinability comparison of several chemicals, the GST-500F was selected to replace the HF. The GST-500F (pH $4.0{\pm}1.0$) is non-volatile, odorless. During experimental works, it was shown that the machining rate increases 1.5 times faster than the conventional ultrasonic machining. The machining load also decreases. However, the enlargement of the hole diameter and significant tool wear are still the problems to be solved.

The Effect of Hygrothermal Aging on the Properties of Epoxy Resin

  • Wang, Youyuan;Liu, Yu;Xiao, Kun;Wang, Can;Zhang, Zhanxi
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.892-901
    • /
    • 2018
  • Because of excellent electrical properties, epoxy resin is widely used in packaging and casting power equipment. Moisture and temperature in the environment are inclined to seriously affect the insulation tolerance of epoxy resin. This work focuses on the aging characteristics of epoxy resin in hygrothermal environment. Scanning electron microscopy images show that there are micro-crack, micro-slit and holes inside aged samples. The moisture absorption process undergoes three equilibrium stages and it does not follow the Fick's second law. Observing the change of hydrogen bonds in the infrared spectra of the dried samples, it is found that chemically moisture absorption immerges when the physical moisture absorption entered the third equilibrium stage. By Debye equation to fit the imaginary part of the dielectric constant, it is concluded that the uniformity of water molecule has a great influence on the electrical conductivity loss. Furthermore, the polarization loss can be more easily affected by water molecules than small free molecules. After the aged samples being dried, their real and imaginary part of the dielectric constant descend, but their original electrical properties cannot completely restored. After chemical moisture absorption appears inside the material, the residual space charges increase significantly and the charge dissipation rate slow down obviously.

전압 주파수와 파형 폭 변화에 따른 유리의 미세 전해 방전 가공 성능에 대한 실험 (The Experiment on the effect of variations of voltage frequency and duty r on the electrochemical discharge machining of Pyrex glass)

  • 이정용;안유민;안시홍;박치현;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.3307-3309
    • /
    • 1999
  • Electrochemical discharge machining (ECDM) is a very recent technique in the fabrication of the micro-electro-mechanical system ( MEMS ) devices. This paper presents the experimental results of the machining of micro-holes on pyrex glass substrates by use of ECDM. Electrolyte is used with a KOH aqueous solution, cathode with copper, anode with platinum, and tool feed system is applied with gravity feed system. Already established experimental results were taken under the condition of constant voltage frequency. However in this paper, the effect of variation of the voltage frequency and duty ratio is considered. In this experiment, it is measured the ECDM performances with variation of the voltage frequency and duty ratio under the conditions of constant other machining variables. ECDM performances are described by the hole depth, and the top hole diameter.

  • PDF

Tuning of Electro-optical Properties of Nano-structured SnO2:Ga Powders in a Micro Drop Fluidized Reactor

  • Lim, Dae Ho;Yang, Si Woo;Yoo, Dong June;Lee, Chan Gi;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • 제57권2호
    • /
    • pp.259-266
    • /
    • 2019
  • Tuning of electro-optical properties of nano-structured $SnO_2:Ga$ powders in a micro drop fluidized reactor (MDFR) was highly effective to enhance the activities of powders to be used as sensor materials. The tuning was conducted continuously in a facile one-step process during the formation of powders. The microscopic hydrodynamic forces affected the band gap structure and charge transfer of $SnO_2:Ga$ powders through the oxygen and interfacial tin vacancies by providing plausible pyro-hydraulic conditions, which resulted in the decrease in the electrical resistance of the materials. The analyses of room-temperature photoluminescence (PL) spectra and FT-IR exhibited that the tuning could improve the surface activities of $SnO_2:Ga$ powders by adjusting the excitation as well as separation of electrons and holes, thus maximizing the oxygen vacancies at the surface of the powders. The scheme of photocatalytic mechanism of $SnO_2:Ga$ powders was also discussed.

Catalytic Membrane Reactor for Dehydrogenation of Water Via gas-Shift: A Review of the Activities for the Fusion Reactor Fuel Cycle

  • Tosti, Silvano;Rizzello, Claudio;Castelli, Stefano;Violante, Vittorio
    • Korean Membrane Journal
    • /
    • 제1권1호
    • /
    • pp.1-7
    • /
    • 1999
  • Pd-ceramic composite membranes and catalytic membrane reactors(CMR) have been studied for hydrogen and its isotopes (deuterium and tritium) purification and recovery in the fusion reactor fuel cycle. Particularly a closed-loop process has been studied for recovering tritium from tritiated water by means of a CMR in which the water gas shift reaction takes place. The development of the techniques for coating micro-porous ceramic tubes with Pd and Pd/Ag thin layers is described : P composite membranes have been produced by electroless deposition (Pd/Ag film of 10-20 $\mu$m) and rolling of thin metal sheets (Pd and Pd/Ag membranes of 50-70 $\mu$m). Experimental results of the electroless membranes have shown a not complete hydrogen selectivity because of the presence of some defects(micro-holes) in the metallic thin layer. Conversely the rolled thin Pd and Pd/ag membranes have separated hydrogen from the other gases with a complete selectivity giving rise to a slightly larger (about a factor 1.7) mass transfer resistance with respect to the electroless membranes. Experimental tests have confirmed the good performances of the rolled membranes in terms of chemical stability over several weeks of operation. Therefore these rolled membranes and CMR are adequate for applications in the fusion reactor fuel cycle as well as in the industrial processes where high pure hydrogen is required (i.e. hydrocarbon reforming for fuel cell)

  • PDF

리니어 압축기에서 그루브 형상 변화에 따른피스톤의 동특성 해석 (Analysis of Dynamic Characteristics of a Piston for a Linear Compressor Considering Changes in Groove Geometry)

  • 노상완;오원식;박경배;임윤철
    • Tribology and Lubricants
    • /
    • 제31권5호
    • /
    • pp.221-228
    • /
    • 2015
  • It is possible to prevent a piston from contacting the cylinder by changing the shape of the piston or by applying micro-textures, such as micro-grooves or micro-holes, over the piston surface. Usually, the minimum radial clearance reaches its minimum value at the beginning of the suction stroke because the pressure around the piston is low and almost axisymmetric such that the net pressure force on the piston is not sufficiently high to support the piston from touching the cylinder. In this study, we apply a series of saw-tooth-shaped grooves on the piston surface, and numerically investigate the effects of groove depth, groove angle, and the number of grooves with radial clearance variations using a finite difference method. We conduct a dynamic analysis of the piston for various changes in groove geometries to obtain the minimum radial clearance variation for the entire compression cycle. The minimum radial clearance increases while friction loss decreases when we apply the series of saw-tooth-shaped grooves on the piston. In addition, we analyze the impact of the change in the groove shape variable due to changes in radial clearance. Leakage variations are relevant to radial clearance, but have almost no effect on the groove parameters.

Thermo-optic Characteristics of Micro-structured Optical Fiber Infiltrated with Mixture Liquids

  • Wang, Ran;Wang, Yuye;Miao, Yinping;Lu, Ying;Luan, Nannan;Hao, Congjing;Duan, Liangcheng;Yuan, Cai;Yao, Jianquan
    • Journal of the Optical Society of Korea
    • /
    • 제17권3호
    • /
    • pp.231-236
    • /
    • 2013
  • We present both theoretically and experimentally the thermo-optic characteristics of micro-structured optical fiber (MOF) filled with mixed liquid. The performance of MOF depends on the efficient interaction between the fundamental mode of the transmitted light wave and the tunable thermo-optic materials in the cladding. The numerical simulation indicates that the confinement loss of MOF presents higher temperature dependence with higher air-filling ratios $d/{\Lambda}$, longer incident wavelength and fewer air holes in the cladding. For the 4cm liquid-filled grapefruit MOF, we demonstrate from experiments that different proportions of solutions lead to tunable temperature sensitive ranges. The insertion loss and the extinction ratio are 3~4 dB and approximate 20 dB, respectively. The proposed liquid-filling MOF will be developed as thermo-optic sensor, attenuator or optical switch with the advantages of simple structure, compact configuration and easy fabrication.

Study of cracks in compressed concrete specimens with a notch and two neighboring holes

  • Vahab, Sarfarazi;Kaveh, Asgari;Shirin, Jahanmiri;Mohammad Fatehi, Marji;Alireza Mohammadi, Khachakini
    • Advances in concrete construction
    • /
    • 제14권5호
    • /
    • pp.317-330
    • /
    • 2022
  • This paper investigated computationally and experimentally the interaction here between a notch as well as a micropore under uniaxial compression. Brazilian tensile strength, uniaxial tensile strength, as well as biaxial tensile strength are used to calibrate PFC2d at first. Then, uniaxial compression test was conducted which they included internal notch and micro pore. Experimental and numerical building of 9 models including notch and micro pore were conducted. Model dimensions of models are 10 cm × 10 cm × 5 cm. Joint length was 2 cm. Joints angles were 30°, 45° and 60°. The position of micro pore for all joint angles was 2cm upper than top of the joint, 2 cm upper than middle of joint and 2 cm upper than the joint lower tip, discreetly. The numerical model's dimensions were 5.4 cm × 10.8 cm. The fractures were 2 cm in length and had angularities of 30, 45, and 60 degrees. The pore had a diameter of 1 cm and was located at the top of the notch, 2 cm above the top, 2 cm above the middle, and 2 cm above the bottom tip of the joint. The uniaxial compression strength of the model material was 10 MPa. The local damping ratio was 0.7. At 0.016 mm per second, it loaded. The results show that failure pattern affects uniaxial compressive strength whereas notch orientation and pore condition impact failure pattern. From the notch tips, a two-wing fracture spreads almost parallel to the usual load until it unites with the sample edge. Additionally, two wing fractures start at the hole. Both of these cracks join the sample edge and one of them joins the notch. The number of wing cracks increased as the joint angle rose. There aren't many AE effects in the early phases of loading, but they quickly build up until the applied stress reaches its maximum. Each stress decrease was also followed by several AE effects. By raising the joint angularities from 30° to 60°, uniaxial strength was reduced. The failure strengths in both the numerical simulation and the actual test are quite similar.