• Title/Summary/Keyword: Micro-environments

Search Result 226, Processing Time 0.03 seconds

Spatiotemporal Routing Analysis for Emergency Response in Indoor Space

  • Lee, Jiyeong;Kwan, Mei-Po
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.6
    • /
    • pp.637-650
    • /
    • 2014
  • Geospatial research on emergency response in multi-level micro-spatial environments (e.g., multi-story buildings) that aims at understanding and analyzing human movements at the micro level has increased considerably since 9/11. Past research has shown that reducing the time rescuers needed to reach a disaster site within a building (e.g., a particular room) can have a significant impact on evacuation and rescue outcomes in this kind of disaster situations. With the purpose developing emergency response systems that are capable of using complex real-time geospatial information to generate fast-changing scenarios, this study develops a Spatiotemporal Optimal Route Algorithm (SORA) for guiding rescuers to move quickly from various entrances of a building to the disaster site (room) within the building. It identifies the optimal route and building evacuation bottlenecks within the network in real-time emergency situations. It is integrated with a Ubiquitous Sensor Network (USN) based tracking system in order to monitor dynamic geospatial entities, including the dynamic capacities and flow rates of hallways per time period. Because of the limited scope of this study, the simulated data were used to implement the SORA and evaluate its effectiveness for performing 3D topological analysis. The study shows that capabilities to take into account detailed dynamic geospatial data about emergency situations, including changes in evacuation status over time, are essential for emergency response systems.

Virtual Experimental Kit for Embedded System Education (임베디드 시스템 교육을 위한 가상 실습 키트)

  • Cho, Sang-Young
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.1
    • /
    • pp.59-67
    • /
    • 2010
  • Laboratory works for embedded system courses are usually performed with hardware based experimental kits that equipped with an embedded board and software development tools. Hardware-based kits have demerits such as high initial setup cost, burdensome maintenance, inadaptability to industry evolution, and restricted educational outcomes. This paper proposes using virtual experimental environments to overcome the demerits of hardware-based kits and describes the design and implementation of a simulation-based virtual experimental kit. With ARM's ARMulator, we developed the kit by adding hardware IPs and user interface modules for peripherals. The developed kit is verified with an experimental program that uses all the augmented software modules. We also ported MicroC/OS-II on the virtual experimental kit for real-time OS experiments.

Advancement of Clay and Clay-based Materials in the Remediation of Aquatic Environments Contaminated with Heavy Metal Toxic Ions and Micro-pollutants

  • Lalhmunsiama, Lalhmunsiama;Malsawmdawngzela, Ralte;Vanlalhmingmawia, Chhakchhuak;Tiwari, Diwakar;Yoon, Yiyong
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.502-522
    • /
    • 2022
  • Clay minerals are natural materials that show widespread applications in various branches of science, including environmental sciences, in particular the remediation of water contaminated with various water pollutants. Modified clays and minerals have attracted the attention of researchers in the recent past since the modified materials are seemingly more useful and efficient for removing emerging water contaminants. Therefore, modified engineered materials having multi-functionalities have received greater interest from researchers. The advanced clay-based materials are highly effective in the remediation of water contaminated with organic and inorganic contaminants, and these materials show enhanced selectivity towards the specific pollutants. The review inherently discusses various methods employed in the modification of clays and addresses the challenges in synthesizing the advanced engineered materials precursor to natural clay minerals. The changes in physical and chemical properties, as investigated by various characterization techniques before and after the modifications, are broadly explained. Further, the implications of these materials for the decontamination of waterbodies as contaminated with potential water pollutants are extensively discussed. Additionally, the insights involved in the removal of organic and inorganic pollutants are discussed in the review. Furthermore, the future perspectives and specific challenges in the scaling up of the treatment methods in technology development are included in this communication.

A Kafka-based Data Sharing Method for Educational Video Services (교육 동영상 공유 서비스의 카프카 기반 데이터 공유 방안)

  • Lee, Hyeon sup;Kim, Jin-Deog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.574-576
    • /
    • 2021
  • It is necessary to introduce micro-service techniques when constructing large-scale operating systems or systems that take into account scalability. Kafka is a message queue with the pub/sub model, which has features that are well applied to distributed environments and is also suitable for microservices in that it can utilize various data sources. In this paper, we propose a data sharing method for educational video sharing services using Apache's Kafka. The proposed system builds a Kafka cluster for the educational video sharing service to share various data, and also uses a spark cluster to link with recommendation systems based on similarities in educational videos. We also present a way to share various data sources, such as files, various DBMS, etc.

  • PDF

Mechanical properties of In-situ doped poly crystalline 3C-SiC thin films grown by CVD (CVD로 in-situ 도핑된 다결정 3C-SiC 박막의 기계적 특성)

  • Lee, Kyu-Hwan;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.194-194
    • /
    • 2009
  • 3C-SiC thin films are widely used in extreme environments, radio frequency (RF) environments, and bio-materials for micro/nano electronic mechanical systems (M/NEMS). The mechanical properties of 3C-SiC thin films need to be considered when designing M/NEMS, so Young's Modulus and the hardness need to be accurately measured. Young's Modulus and the hardness are influenced by N-doping. In this paper, we show that the mechanical properties of poly (polycrystalline) 3C-SiC thin films are influenced by the N-doping concentration. Furthermore, we measure the mechanical properties of 3C-SiC thin films for N-doping concentrations of 1%, 3%, and 5%, by using nanoindentation. For films deposited using a 1% N-doping concentration, Young's Modulus and the hardness were measured as 270 GPa and 30 GPa, respectively. When the surface roughness of the thin films was investigated by using atomic force microscopy (AFM), the roughness of the 5% N-doped 3C-SiC thin film was the lowest of all the films, at 15 nm.

  • PDF

Analysis of Downlink Wideband DS-CDMA Systems with Smart Antenna for Different Spreading Bandwidths in Wideband Multipath Channel

  • Jeon Jun-Soo;Kim Cheol-Sung
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.4
    • /
    • pp.183-189
    • /
    • 2004
  • In this paper, the Eigen-RAKE receiver in wideband direct sequence code-division multiple access(DS-CDMA) systems with downlink smart antenna is analyzed for different spreading bandwidths(1.25 MHz, 5 MHz, 10 MHz) and different channel environments(macro, micro). The realistic spatio-temporal wideband multipath channel is assumed, one of which is standardized multiple-input single-output(MISO) radio channel model for WCDMA link-level simulations proposed by $3^{rd}$ generation partnership project(3GPP) contributions. We assumed spatial scattering phenomenon in which many unresolvable path signals within a limited range of spatial angle simultaneously contribute to the signals received at the receiver. Several multipaths within one chip are distinguished into each one and the first multipath components are selected as the desired signal and the others are considered self-interference. Downlink DS-CDMA system with eigenbeamformer using wider bandwidth present better performance than that using narrow bandwidth system by employing Eigen-RAKE receiver of many number of branches. It is shown that the downlink eigenbeamformer is more effective in typical urban macro cellular environments when using Eigen-RAKE receiver.

A Study on the Urban Heat Simulation Model Incorporating the Climate Changes (기후변화가 반영된 도시 열환경 시뮬레이션 모델의 연구)

  • Kang, Jonghwa;Kim, Wansoo;Yun, Jeongim;Lee, Joosung;Kim, Seogcheol
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.5
    • /
    • pp.697-707
    • /
    • 2018
  • A fast running model comprising the climate change effects is proposed for urban heat environment simulations so as to be used in urban heat island studies and/or the urban planning practices. By combining Hot City Model, a high resolution urban temperature prediction model utilizing the Lagrangian particle tracing technique, and the numerical weather simulation data which are constructed up to year of 2100 under the climate change scenarios, an efficient model is constructed for simulating the future urban heat environments. It is applicable to whole city as well as to a small block area of an urban region, with the computation time being relatively short, requiring the practically manageable amount of the computational resources. The heat environments of the entire metropolitan Seoul area in South Korea are investigated with the aid of the model for the present time and for the future. The results showed that the urban temperature gradually increase up to a significant level in the future. The possible effects of green roofs on the buildings are also studied, and we observe that green roofs don't lower the urban temperature efficiently while making the temperature fields become more homogeneous.

Direct Bonding Characteristics of 2 inch 3C-SiC Wafers for MEMS in Hash Environments (극한환경 MEMS용 2 inch 3C-SiC 기판의 직접접합 특성)

  • Chung, Yun-Sik;Ryu, Ji-Goo;Kim, Kyu-Hyun;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.387-390
    • /
    • 2002
  • SiC direct bonding technology is very attractive for both SiCOI(SiC-on-insulator) electric devices and SiC-MEMS(micro electro mechanical system) fields because of its application possibility in harsh environments. This paper presents pre-bonding techniques with variation of HF pre-treatment conditions for 2 inch SiC wafer direct bonding using PECVD(plasma enhanced chemical vapor deposition) oxide. The PECVD oxide was characterized by XPS(X-ray photoelectron spectrometer) and AFM(atomic force microscopy). The characteristics of the bonded sample were measured under different bonding conditions of HF concentration and an applied pressure. The bonding strength was evaluated by the tensile strength method. The bonded interface was analyzed by using IR camera and SEM(scanning electron microscope). Components existed in the interlayer were analyzed by using FT-IR(fourier transform infrared spectroscopy). The bonding strength was varied with HF pre-treatment conditions before the pre-bonding in the range of $5.3 kgf/cm^2$ to $15.5 kgf/cm^2$

  • PDF

BETTER UNDERSTANDING OF THE BIOLOGICAL EFFECTS OF RADIATION BY MICROSCOPIC APPROACHES

  • Kim, Eun-Hee
    • Nuclear Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.551-560
    • /
    • 2008
  • Radiation has stochastic aspects in its generation, its choice of interaction mode during traveling in media, and its impact on living bodies. In certain circumstances, like in high dose environments resulting from low-LET radiation, the variance in its impact on a target volume is negligible. On the contrary, in low dose environments, especially when they are attributed to high-LET radiation, the impact on the target carries with it a large variance. This variation is more significant for smaller target volumes. Microdosimetric techniques, which have been developed to estimate the distribution of radiation energy deposited to cellular and subcellular-sized targets, contrast with macrodosimetric techniques which count only the average value. Since cells and DNA compounds are the critical targets in human bodies, microdosimetry, or dose estimation by microscopic approach, helps one better analyze the biological effects of radiation on the human body. By utilizing microbeam systems designed for individual cell irradiation, scientists have discovered that human cells exhibit radiosensitive reactions without being hit themselves (bystander effect). During the past 10 or more years, a new therapeutic protocol using discontinuous multiple micro-slit beams has been investigated for its clinical application. It has been suggested that the beneficial bystander effect is the essence of this protocol.

GNSS/Multiple IMUs Based Navigation Strategy Using the Mahalanobis Distance in Partially GNSS-denied Environments (GNSS 부분 음영 지역에서 마할라노비스 거리를 이용한 GNSS/다중 IMU 센서 기반 측위 알고리즘)

  • Kim, Jiyeon;Song, Moogeun;Kim, Jaehoon;Lee, Dongik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.4
    • /
    • pp.239-247
    • /
    • 2022
  • The existing studies on the localization in the GNSS (Global Navigation Satellite System) denied environment usually exploit low-cost MEMS IMU (Micro Electro Mechanical Systems Inertial Measurement Unit) sensors to replace the GNSS signals. However, the navigation system still requires GNSS signals for the normal environment. This paper presents an integrated GNSS/INS (Inertial Navigation System) navigation system which combines GNSS and multiple IMU sensors using extended Kalman filter in partially GNSS-denied environments. The position and velocity of the INS and GNSS are used as the inputs to the integrated navigation system. The Mahalanobis distance is used for novelty detection to detect the outlier of GNSS measurements. When the abnormality is detected in GNSS signals, GNSS data is excluded from the fusion process. The performance of the proposed method is evaluated using MATLAB/Simulink. The simulation results show that the proposed algorithm can achieve a higher degree of positioning accuracy in the partially GNSS-denied environment.