• Title/Summary/Keyword: Micro-environmental analysis

Search Result 351, Processing Time 0.031 seconds

The Analysis of Instantaneous $CO_2$ Uptake and Evapotranspiration of Herbaceous Plants for Artificial Roof Greening (옥상녹화용 초본식물의 순간 $CO_2$ 흡수 및 증발산량 분석)

  • Ahn, Geun-Young;Han, Seung-Won;Lee, Eun-Heui
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.1
    • /
    • pp.91-101
    • /
    • 2011
  • The purpose of this study is to demonstrate the positive effects of artificial ground greening on the reduction of carbon dioxide ($CO_2$) which can help improve ecological functions in cities and mitigation of climate change, through quantifying $CO_2$ uptake and evapotranspiration by the process of photosynthesis of some plants. Experiment of $CO_2$ uptake and evapotranspiration was conducted by measurement of $CO_2$ exchange rate using the infrared gas analyzer, for 7 month, growing season from May to November 2009, 2 times a month. The result was as follows; The $CO_2$ uptake quantity per $cm^2$ of Chrysanthemum zawadskii was the highest rate at $21.47{\times}10^{-6}g/cm^2/s$ and Poa pratensis was $16.20g{\times}10^{-6}g/cm^2/s$. The stronger was light of intensity, the higher were $CO_2$ uptake rate of most plants. In quantity of evapotranspiration, Poa pratensis was the highest rate at $8.75{\times}10^{-5}g/cm^2/s$ and Aquilegia buergariana was $8.66{\times}10^{-5}g/cm^2/s$. From this study, it is confirmed that artificial ground greening has capacity of absorption $CO_2$ and effects on improving urban microclimate.

A Study on Integrated Platform for Prevention of Disease and Insect-Pest of Fruit Tree (특용과수의 병해충 및 기상재해 방지를 위한 통합관리 플랫폼 설계에 대한 연구)

  • Kim, Hong Geun;Lee, Myeong Bae;Kim, Yu Bin;Cho, Yong Yun;Park, Jang Woo;Shin, Chang Sun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.10
    • /
    • pp.347-352
    • /
    • 2016
  • Recently, IoT technology has been applied in various field. In particular, the technology focuses on analysing large amount of data that has been gathered from the environmental sensors, to provide valuable information. This technique has been actively researched in the agro-industrial sector. Many researches are underway in the monitoring and control for growth crop environment in agro-industrial. Normally, the average weather data is provided by the manual agro-control method but the value may differ due to the different region's weather and environment that may cause problem in the disease and insect-pest prevention. In order to develop a suitable integrated system for fruit tree, all the necessary information is obtained from the Jeollanam-do province, which has the high production rate in the Korea. In this paper, we propose an integrated support platform for the growing crops, to minimize the damage caused due to the weather disaster through image analysis, forecasting models, by using the micro-climate weather information collection and CCTV. The fruit tree damage caused by the weather disaster are controlled by utilizing various IoT technology by maintaining the growth environment, which helps in the disease and insect-pest prevention and also helps farmers to improve the expected production.

Simple Semiquantitative Determination and Selective Preconcentration of Trace Heavy Metals in Environmental Pollutants : Determination of Chromium (VI) with DPC Gel (環境汚染 重金屬의 選擇的 濃縮 및 簡易分析法 : DPC 겔의 의한 크롬 (VI) 의 定量)

  • Yong Keun Lee;Kyu Ja Whang;In Hwa Woo
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.275-282
    • /
    • 1981
  • A simple semiquantitative procedure was developed for the determination of sub-ppm level of chromium(VI) in aquatic samples by using an analytical micro-column packed with diphenylcarbazide(DPC) gel beads. DPC gel beads were prepared by swelling XAD-2 resin(115∼150 mesh in dry condition) in ethanol for 10min, packing into a glass column(1.5 mm bore, 65nm length) and adsorbing 1ml of ethanol solution of $2{\times}10^{-3}M$ DPC for 20min at room temperature. When 0.5ml of ethanol solution containing chromium(VI) was passed through the DPC gel column for 40min, the original white color of the reagent gel turned to red-violet from the up-stream of the column. As the length of colored band was proportional to the total amount of chromium(VI) in the sample solution passed through the column, the concentration of chromium(VI) could be determined from the calibration line which had been prepared by using the standard solution. Chromium(VI) ion as small as from 0.1 to 0.8 ppm could be determined with ${\pm}5{\sim}{\pm}15{\%}$ relative errors. Since other interfering cations were few, 100-fold excess of Fe(III), 50-fold excess of Cu(II) could be masked with EDTA. This method was successfully applied to the analysis of chromium(VI) in industrial effluents.

  • PDF

Comparison of the Thermal Environment in the Downtown Location and the Outskirt Site base on the Field Observations in the Summer (미기상 관측을 통한 하절기 도심과 외곽의 열환경 비교)

  • Jung, Im-Soo;Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.94-101
    • /
    • 2009
  • This study which is the fundamental work to investigate the property of urban climate compared the property of thermal environment in the downtown location and the outskirt site based on the field observation in the summer. We analysed thermal environment in the downtown location mainly by distributional characteristics during day and night with changes and correlation analysis of the air temperature, the globe temperature and the surface temperature through the simultaneous observation of the property of thermal environment at two places in real time. The summary of finding in this study is as follows. (1)It is observed on the day chosen by sample that diurnal air temperature range in the downtown location is $22.3{\sim}34.9^{\circ}C$, and diurnal air temperature range in the Outskirt site is $20.0{\sim}34.3^{\circ}C$, so, we found that the diurnal air temperature range in the outskirt site is $1.7^{\circ}C$ higher than in the downtown location. (2)In comparison of the globe temperature after sunset, we found the change of more sudden temperature drops in the outskirt site than in the downtown location. (3)It is observed on the days chosen by sample that the average of globe temperature range is $1.1^{\circ}C$, the average of surface temperature range is $1.0^{\circ}C$, and air temperature range is $2.0^{\circ}C$, thus, the we found that the average of air temperature is $1.0^{\circ}C$ higher than globe temperature and the surface temperature. (4)After the consideration of air temperature and globe temperature distribution, the highest temperature reaching time of globe temperature is one hour earlier than air temperature in the downtown location, on the other hand, although the highest temperature reaching time of globe temperature in the outskirt sites is one hour later than in the downtown location, the timelag found in the downtown location was not found in the outskirt site.

Regional Differences of Leaf Spot Disease on Grapevine cv. 'Campbell Early' Caused by Pseudocercospora vitis in Plastic Green House (포도 캠벨얼리의 무가온 하우스재배시 지역별 갈색무늬병 발생차이)

  • Jung, Sung-Min;Park, Jong-Han;Park, Seo-Jun;Lee, Han-Chan;Lee, Jae-Wook;Ryu, Myung-Sang
    • Research in Plant Disease
    • /
    • v.15 no.3
    • /
    • pp.193-197
    • /
    • 2009
  • Pseudocercospora leaf spot was major disease of grape cultivar 'Campbell Early' in Korea. Leaf spot first appeared in early June and rapidly dispersed to other leaves through rainy season. Disease progress of leaf spot by Pseudocercospora vitis in plastic green house, in the two provinces (Gimje and Gimcheon), were investigated in 2007. Differences of Infected leaves (%) between cultivation systems were observed in field and plastic green house, but there was no difference between provinces. Micro environmental factors, such as temperature and relative humidity, were correlated with infected leaves by PROC REG procedure of SAS (Statistical Analysis System). As a result, regression model best described ($R^2=0.95^{**}$) the infected leaves as a function of the interaction of cumulated temperatures; Y (Infected leaves)=-7.0101+0.0496$\times$20Hcum (Cumulated hour above 20 degree)+0.0208$\times$20cum (Cumulated temperature above 20 degree)-0.2781$\times$25Hcum (Cumulated hour above 25 degree). A statistics model was shown that cumulated hour and temperature above specific degree were critical factor for Pseudocercospora leaf spot on the grapevine leaves in plastic green house.

Effects of dye-guidance brushing etching technique on the performance of pits and fissures sealant (Dye-guidance와 brushing을 통한 산부식 방법이 치면열구전색술의 수복의 질에 미치는 영향)

  • Hung, Phan Ai;Lee, Nan-Young;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.1
    • /
    • pp.106-121
    • /
    • 2007
  • The purpose of this study was to examine the effects of suggested etching method on the performance of pits and fissures sealant. In the first part, seventy extracted sound human permanent third molars and premolars were used. The teeth were randomly divided and performed in three different groups as follows : conventional etching, enameloplasty, and testing group. Non-pumicing, dye-guidance vigorous brushing-start etching technique was applied on the occlusal of testing group. Then the pit and fissure sealant was applied on all of the specimens. After the thermocycling and immersing in 1% methylene blue, the resin embedded sections were made. The microleakage data on the section were then recorded under the stereoscope and statistic analysis was done. Additional experiments were also performed : direct fissure surface etched pattern experiment, replica study, and micro-shear bond strength testing observation. The second part included two groups. A paired study was designed to evaluate the influence the environment has on the performance of the sealant. After etching, half of each occlusal surface received one of the two following treatments in succession: sealing in laboratory and intraoral condition (group 1), sealing in intraoral condition with and without a single-bonding agent (group 2). The results of present study can be summarized as follows: - The microleakage of testing group was significant different with conventional method (P<.05) and was not different with the enameloplasty group (P>.05). - The quality and quantity of etched enamel were improved. - Microshear bond strength of testing group was higher than control group (p<.05). - The environmental condition was influenced on the performance of the sealant. The testing etching method modified the capacity of the etching agent to penetrate into the pits and fissures, and simultaneous enhance their efficiency in vitro condition.

  • PDF

A Study on the Variation of Rn-222 Concentration in Groundwater at Busan-Geumjeong area (부산 금정구지역의 지하수에 포함된 라돈농도 변화 연구)

  • Cho, Jungg-Sook;Lee, Hyo-Min;Kim, Sun-Woong;Kim, Jin-Seop
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.3
    • /
    • pp.149-158
    • /
    • 2012
  • In this paper, we measured the variations of radon concentrations in groundwater using low-level Liquid Scintillation Counter (LSC), an instrument for analyzing the alpha and beta radionuclides at its 10 sites around the Kumjung-Gu, north-western of Busan. Optimization of Pulse Shape Analyzer (PSA) to determinate the highest value of figure of merit (FM) was decided using Quantulus 1200 LSC with radium-226 source, the optimal PSA level was shown in the range of 100 to 110. The results show that the Minimum Detectable Activity (MDA) of radon concentrations is 0.61 $Bq{\cdot}L^{-1}$ for 20 minutes in PSA level. We find that the average radon concentration in groundwater is high in granitic rock area and low in volcanic rock area. (Biotite granite : 191.39 $Bq{\cdot}L^{-1}$, Micro graphic granite : 141.88 $Bq{\cdot}L^{-1}$, Adamellite : 92.94 $Bq{\cdot}L^{-1}$, Andesite (volcanic) : 35.35 $Bq{\cdot}L^{-1}$). No significant seasonal variation pattern is observed from the long-term variation analysis from 10 selected sites. We have not seen the significant correlation of radon concentration to groundwater temperature, atmospheric temperature, atmospheric pressure and rainfall. The concentration variation is probably caused by more complex factors and processes.

A Study on the Analysis of Energy Voucher Effects Using Micro-household Data (가구부문 미시자료를 활용한 에너지바우처 효과 추정에 관한 연구)

  • Lee, Eun Sol;Park, Kwang Soo;Lee, Yoon;Yoon, Tae Yeon
    • Environmental and Resource Economics Review
    • /
    • v.28 no.4
    • /
    • pp.527-556
    • /
    • 2019
  • In Korea, nearly 100 billion won is spent annually under the name of energy voucher on 600,000 households for the last five years, and this is a unique case and hard to monitor worldwide. Therefore, no studies have been conducted to assess impacts of the energy voucher on energy consumption and cost burden alleviation for beneficiaries. This paper aims to demonstrate the effectiveness of energy vouchers in terms of energy expense. The propensity score matching was conducted on samples of low-income households based on the Korea Welfare Panel. Then, simple Difference-In-Differences and Fixed-Effect Difference-In-Differences models were applied to estimate the effect of energy vouchers. In results, the beneficiaries of energy vouchers would spend an additional 4,371~4,870 won per month on energy consumption. The ratio is equivalent to 51.9~57.7 percent of the aid, which is also the highest when compared with 23~56 percent of U.S. Food Stamp. In terms of energy welfare, voucher payment could become one of the best management practices. However, identifying the blind spots as non-reciprocal households and expanding the differential support mechanism that reflects the energy consumption environment should be solved in the future.

Estimation of Allowable Drop Height for Oriental Pears by Impact Tests (충격시험에 따른 배의 허용낙하높이 추정)

  • Kim, M. S.;Jung, H. M.;Seo, R.;Park, I. K.;Hwang, Y. S.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.461-468
    • /
    • 2001
  • Impact between fruits and other materials is a major cause of product damage in harvesting and handling systems. The oriental pears are more susceptible to bruising than other fruits such as European pears and apples, and are required more careful handling. The interest in the handling of the pears for the processing systems has raised the question of the allowable drop height to which pears can be dropped without causing objectionable damage. Drop tests on pears were conducted using an impact device developed by authors to estimate the allowable drop height without bruising. The impact device was constructed to hold in a selected orientation and to release a fruit by vacuum for dropping on to a force transducer. The drop height was adjustable for zero to 60 cm to achieve the desired distance between the bottom of the fruits and the top of the impact force transducer. The transducer was secured to 150 kg$\sub$f/ concrete block. The transducer signal was sampled every 0.17 ms with a strain gage measurement board in the micro computer where it was digitaly stored for later analysis. The selected sample fruit was Niitaka cultivar of pears which is one of the most promising fruit for export in Korea. The pears were harvested during the 1998 harvest season from an orchard in Daejeon. The sample fruit was selected from two groups which were stored for 3 months and 5 months respectively by the method of current commercial practice. The pears were allowed to stabilize at environmental condition(18$^{\circ}C$, 65% rh) of the experimental room. One hundred fifty six pears were tested from the heights of 5, 7.5. 10 and 12.5 cm while measurement were made of impact peak force, contact time, time to peak force, dwell time, pear diameter and mass. The bioyield strength and modulus of elasticity were measured using UTM immediately after each drop test. The allowable drop height was estimated on the base of bioyield strength of the pears in two ways. One was assumed the peak force during impact test increasing linearly with time, and the other was based on the actual drop test results. The computer program was developed for measuring the impact characteristics of the pears and analyzing the data obtained in the study. The peak force increased while contact times decreased with increasing drop height and contact times of the sample from the hard tissue group. The allowable drop height increased with increasing bioyield strength and contact times, and also varied with Poisson\`s ratio, mass and equilibrium radius of the pears. The allowable drop height calculated by a theoretical method was in the range from 1 to 4 cm, meanwhile, the estimated drop height considering the result of the impact test was in the range from 1 to 6 cm. Since the physical properties of fruits affected significantly the allowable drop height, the physical properties of the fruits should be considered when estimating the allowable drop height.

  • PDF

Sensitivity of COMS/GOCI Measured Top-of-atmosphere Reflectances to Atmospheric Aerosol Properties (COMS/GOCI 관측값의 대기 에어러솔의 특성에 대한 민감도 분석)

  • Lee, Kwon-Ho;Kim, Young-Joon
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.6
    • /
    • pp.559-569
    • /
    • 2008
  • The Geostationary Ocean Color Imager (GOCI) on board the Communication Ocean Meteorological Satellite (COMS), the first geostationary ocean color sensor, requires accurate atmospheric correction since its eight bands are also affected by atmospheric constituents such as gases, molecules and atmospheric aerosols. Unlike gases and molecules in the atmosphere, aerosols can interact with sunlight by complex scattering and absorption properties. For the purpose of qualified ocean remote sensing, understanding of aerosol-radiation interactions is needed. In this study, we show micro-physical and optical properties of aerosols using the Optical Property of Aerosol and Cloud (OPAC) aerosol models. Aerosol optical properties, then, were used to analysis the relationship between theoretical satellite measured radiation from radiative transfer calculations and aerosol optical thickness (AOT) under various environments (aerosol type and loadings). It is found that the choice of aerosol type makes little different in AOT retrieval for AOT<0.2. Otherwise AOT differences between true and retrieved increase as AOT increases. Furthermore, the differences between the AOT and angstrom exponent from standard algorithms and this study, and the comparison with ground based sunphotometer observations are investigated. Over the northeast Asian region, these comparisons suggest that spatially averaged mean AOT retrieved from this study is much better than from standard ocean color algorithm. Finally, these results will be useful for aerosol retrieval or atmospheric correction of COMS/GOCI data processing.