• Title/Summary/Keyword: Micro-electrical discharge machining

Search Result 75, Processing Time 0.021 seconds

Fabrication of 3-D Micro Structure and Micro Tool Using MEDM (미세 방전을 이용한 3차원 미세 구조물 및 미세 공구 제작)

  • Kim B. H.;Yi S. M.;Chu C. N.;Kang Y. H.;Choi T. H.;Park H. J.;Lee Y. S.
    • Transactions of Materials Processing
    • /
    • v.14 no.3 s.75
    • /
    • pp.251-256
    • /
    • 2005
  • 3-D micro structures and micro tools were fabricated using Micro Electrical Discharge Machining (MEDM). To make micro structures, micro electrical discharge milling process was applied. During micro electrical discharge milling, electrode (tool) worn in the both axial and radial direction. To compensate tool wear which has significant influence on machining accuracy, machining path overlapping was proposed. Machining characteristics of micro electrical discharge milling was investigated in considering of depth of cut and capacitance of discharge circuit. Micro complex shaped tools were also fabricated using REDM (reverse electrical discharge machining). Sacrificial electrodes were machined through electrical discharge milling process and were used as electrode to make micro tools. Using this process several micro tools shape of 'ㄷ', 'ㅁ' and 'o' were fabricated. With these complex shaped tools, micro machining was successfully applied repeatedly.

Fabrication of Micro Structure Using Electro Discharge Deposition (Electro Discharge Deposition (EDD)을 이용한 미세 구조물 제작)

  • 오석훈;민병권;박성준;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1865-1868
    • /
    • 2003
  • This paper provides a new method for hybrid machining, particularly suited to micro fabrication applications such as micro point, micro line, micro structure, micro partition and so on. Developed micro fabrication process by electrical discharge machining (EDM) and electrical discharge deposition (EDD) with metal powder (Ti, Fe) has been studied to build TiC or FeC structure. Titanium powder or iron powder is supplied from working fluid (kerosene or de-ionized water with powder) and adheres on a workpiece by the heat and electric power caused by the electrical discharge. The use of a tool electrode is expected to keep powder concentration high in the gap between a workpiece and a tool electrode and to accrete powder material on the workpiece. The deposition is tried under various electrical conditions (workpiece. tool electrode, working fluid, discharge current, voltage and powder etc.). On the other hand. using electrical discharge machining (EDM) with the same tool electrode, it can be used as a removal process (cutting) by electro erosion at the same time. Therefore. this new method can do a hybrid machining to build up and down a structure with the workpiece.

  • PDF

The Characteristic Evaluations of Oxygen Gas Assisted Dry Micro Electrical Discharge Machining (고압 $O_2$ 가스를 이용한 기체 미세방전가공의 특성 평가)

  • Yoo B.H.;Min B.K.;Lee S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1571-1574
    • /
    • 2005
  • Generally, the kerosene or the deionized water has been used for dielectric fluid in the electrical discharge machining. The spark occurs when the voltage is over the breakdown voltage and induces high temperature. In this study, the Oxygen gas is used as the dielectric. The voltage behavior in the dry Micro Electrical discharge machining is compared with that of the conventional Micro Electrical discharge machining. The dry Micro EDM has some advantages. The electrode wear isvery smaller than that of the conventional Micro EDM. The contamination in the dry Micro EDM can be drastically reduced comparing to that of the conventional Micro EDM. The Oxygen gas can be replaced as the dielectric successfully.

  • PDF

Micro-shaft and Micro-hole Machining for Micro Punching (마이크로 펀칭용 미세축, 미세구멍의 가공)

  • Ryu S. H.;Cho P. J.;Lee K. H.;Chu C. N.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.239-244
    • /
    • 2002
  • In this study, we developed the manufacturing technology of micro-hole and micro-shaft for micro punching system using micro electrical discharge machining and micro electro chemical machining. Micro punching dies of tungsten carbide with $55\;{\mu}m\;and\;110\;{\mu}m$ diameter and $250\;{\mu}m$ depth were made by micro electrical discharge machining. The form accuracy and surface roughness of die hole were pretty good and it was shown that the punched hole quality was fine. WC micro-shaft with $30\;{\mu}m$ diameter was made by the multistep micro electro chemical machining. The developed technologies can be effectively used in precision manufacturing of micro punching die and mass production of micro-shaft.

  • PDF

Fabrication of 3D Micro Structure Using Micro Electrical Discharge Milling (마이크로 방전 밀링을 이용한 미세 구조물 제작)

  • 이병욱;이상민;김보현;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.41-47
    • /
    • 2004
  • As mechanical structures are minimized, the demand on micro dies and molds has increased. Machining complex 3D shapes requires fabrication procedures for preparing the electrodes. Micro electrical discharge milling using a simple shape electrode can produce 3D micro structure. In this paper the machining characteristics of micro electrical discharge milling according to depth of cut and capacitance are investigated. The machining time is diminished when simple tool-paths and algorithms for changing the feedrate are applied. But a distorted bottom shape and a tapered wall shape are inevitable after machining. The distorted bottom shape and the taper angle of wall are reduced by finish machining.

Micro Machining by EDM and ECM (방전 가공과 전해 가공을 이용한 미세 가공)

  • Jeon, Dong-Hun;Kim, Bo-Hyun;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.10
    • /
    • pp.52-59
    • /
    • 2006
  • Micro electrical discharge machining (EDM) and micro electrochemical machining (ECM) were studied for the fabrication of micro structures. Micro EDM has been used to machine micro structures from metals. However, since the tool wear is inevitable during the machining, the tool wear is drawback for the precision machining. Micro ECM is also used for micro machining and produces better surface quality than that of micro EDM. Moreover, since tool electrodes are not worn out, micro ECM is suitable for the precision micro machining. However, the machining rate is lower than that of micro EDM. In this paper, therefore, the hybrid machining process which uses micro EDM as roughing and micro ECM as finishing is introduced. By using this hybrid machining, a hemisphere with $100\;{\mu}m$ radius was fabricated and the efficiency of the process was investigated experimentally.

Tool Electrode Wear Compensation using Round Trip Method for Machining Cavities in Micro EDM Process (마이크로 방전가공에서 Round Trip Method를 이용한 전극마모 보정)

  • Park Sung-Jun;Kim Young-Tae;Min Byung-Kwon;Lee Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.42-49
    • /
    • 2004
  • Electrical discharge machining (EDM) is one of the most extensively used non-conventional material removal process. The recent trend in reducing the size of product has given micro EDM a significant amount of research attention. Micro EDM is capable of machining not only micro holes and micro shafts as small as a few micrometers in diameter but also complex three dimensional micro cavities. But, longitudinal tool wear by electrical discharge is indispensable and this affects the machining accuracy in micro EDM process. Therefore, newly developed tool wear compensation strategy called round trip method is suggested and verified by experiment. In this method, machining depth of cut, overlap effect and critical travel length are also considered.

Development of Micro-EDM Machine for Microshaft and Microhole Machining (미세 축ㆍ구멍 가공을 위한 미세방전가공기의 개발)

  • 김규만;최덕기;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.55-61
    • /
    • 1998
  • Recently, the needs of machining technologies of very small parts have been increasing with advent of micro-revolution. These technologies have mostly used the method applied to semi-conductor production process such as LIGA, etc. But they have serious difficulties to settle down in terms of workpiece materials, machining thickness, 3-dimensional structure. Therefore. mciro-machining technology using EDM(Electrical Discharge Machining) was proposed. It is very difficult to machine the micro-parts (microshaft, microhole) using conventional machining. Micro-machining using BDM can machine the micro-parts easily because it requires little machining force. This MEDM(Micro-EDM) need the capabilities to move a electrode and control a discharge energy precisely, and the gap control strategy to maintain the optimal discharge condition is necessary. Therefore, in this study, the new EDM machine with high precision motion stage and high-performance EDM device was developed. Using this MEDM machine, we have machined microshaft and microhole with various shapes and sizes.

  • PDF

Micro Electrical Discharge Milling Using Deionized Water (탈이온수를 이용한 미세 방전 밀링)

  • Chung Do-Kwan;Chu Chong-Nam;Kim Bo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.69-75
    • /
    • 2006
  • In this paper, micro electrical discharge milling using deionized water as dielectric fluid was investigated. In EDM, dielectric fluid is an important factor which affects machining characteristics. When deionized water was used as dielectric fluid, machining characteristics were investigated according to voltage, capacitance, and resistivity of deionized water. Machining gap increased with increasing voltage and capacitance. As the resistivity of deionized water decreased, the machining gap increased. The wear of a tool electrode and machining time can be reduced by using deionized water instead of EDM oil. Surface roughness was also improved when deionized water was used.

Influence of Debris in Micro Electrical Discharge Machining Processes (미세방전가공 중 발생하는 debris를 고려한 가공특성 연구)

  • Kook K.H.;Lee H.W.;Min B.K.;Lee S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1244-1247
    • /
    • 2005
  • The material removal mechanism of Electrical Discharge Machining (EDM) process has been studied for several decades. However, understanding of the material removal mechanism is still a difficult problem because the mechanism involves complicated physical phenomena including plasma. Especially, for a micro-EDM process, due to the influence of the debris that is generated during the machining process, quantitative modeling of EDM becomes more complex. To understand better the effects of the debris in the micro-EDM process experimentally, a new approach has been introduced in this study. Using a specially designed workpiece holder, the debris generated during the EDM with various process conditions has been collected. Then, using a simulated environment using micro-sized metal powders, the influence of the debris during the single EDM discharge has been observed. The effects of EDM process parameters on the debris size and product quality are discussed.

  • PDF