• Title/Summary/Keyword: Micro-doppler

Search Result 64, Processing Time 0.021 seconds

A Study on the Portable Micro Displacement Measurement Using Laser Interferometer (레이저 간섭계를 이용한 이동형 미세 변위 측정에 관한 연구)

  • Choi, K.H.;Yang, H.C.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.99-103
    • /
    • 2006
  • The laser interferometer has been used for measurement of the micro displacement error. Although the laser interferometer is widely accepted as a tool for measurement of motion accuracy, the set-up procedure is time-consuming because of the strict requirement on alignment between a laser head and optic units. This paper addresses the development of a laser interferometer to measure the micro displacement for a micro machine. The portable laser interferometer which integrates a laser probe and optics, is developed for the convenient measurement. For the experiment, moving mirror set up on the micro stage. The velocity decoding board is also added to calculate doppler shift frequency directly. The output signal is obtained and analyzed by LabView. Finally experiments are found out the relation between micro displacement and output signal.

  • PDF

Investigation of the Performance of Spectral Domain Optical Doppler Tomography with High-speed Line Scanning CMOS Camera and Its Application to the Blood Flow Measurement in a Micro-tube

  • Park, Cheol Woo;Lee, Changho;Lim, SooHee;Ni, Aleksey;An, Jin Hyo;Lee, Ho;Bae, Jae Sung;Kim, Jeehyun
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.174-180
    • /
    • 2012
  • In this study, the feasibility of spectral domain optical Doppler tomography for measuring blood flow characteristics in a micro-tube was demonstrated through several experiments. The use of an SD-ODT system in blood flow measurement can provide high resolution images (5 microns resolution). We prepared three capillary tubes to reveal the effect of different concentrations of hematocrit ratio (HR). One tube serves as the control. The two other tubes contained different concentrations of HR (5%, 25%). Three different capillary tube inlet flow velocities were tested in the present study. The Reynolds number (Re) which is based on the capillary tube inner diameter ranges from Re=6 to 48. We calculated a Doppler shift of the power spectrum of the temporal interference fringes with Kasai autocorrelation function to achieve the velocity profile of the flow. As a result, SD-ODT systems could not detect the cell depletion layer in the present study due to the limitation of spatial resolution. Nevertheless, these systems were proven to be capable of observing the RBCs of blood.

Human Walking Detection and Background Noise Classification by Deep Neural Networks for Doppler Radars (사람 걸음 탐지 및 배경잡음 분류 처리를 위한 도플러 레이다용 딥뉴럴네트워크)

  • Kwon, Jihoon;Ha, Seoung-Jae;Kwak, Nojun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.7
    • /
    • pp.550-559
    • /
    • 2018
  • The effectiveness of deep neural networks (DNNs) for detection and classification of micro-Doppler signals generated by human walking and background noise sources is investigated. Previous research included a complex process for extracting meaningful features that directly affect classifier performance, and this feature extraction is based on experiences and statistical analysis. However, because a DNN gradually reconstructs and generates features through a process of passing layers in a network, the preprocess for feature extraction is not required. Therefore, binary classifiers and multiclass classifiers were designed and analyzed in which multilayer perceptrons (MLPs) and DNNs were applied, and the effectiveness of DNNs for recognizing micro-Doppler signals was demonstrated. Experimental results showed that, in the case of MLPs, the classification accuracies of the binary classifier and the multiclass classifier were 90.3% and 86.1%, respectively, for the test dataset. In the case of DNNs, the classification accuracies of the binary classifier and the multiclass classifier were 97.3% and 96.1%, respectively, for the test dataset.

Weather Radar Image Gener ation Method Using Inter polation based on CUDA

  • Yang, Liu;Jang, Bong-Joo;Lim, Sanghun;Kwon, Ki-Chang;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.4
    • /
    • pp.473-482
    • /
    • 2015
  • Doppler weather radar is an important tool for meteorological research. Through several decades of development, Doppler weather radar has enormous progress in understanding, detection and warning of meso and micro scale weather system. It makes a significant contribution to weather forecast and weather disaster warning. But the large amount of data process limits the application of Doppler weather radar. This paper proposed for fast weather radar data processing based on CUDA. CDUA is a powerful platform for highly parallel programming developed by NVIDIA. Through running plenty of threads, radar data can be calculated at same time. In experiment, CUDA parallel program can significantly improve weather data processing time.

An Efficient Method to Extract the Micro-Motion Parameter of the Missile Using the Time-Frequency Image (시간-주파수 영상을 이용한 효과적인 미사일 미세운동 변수 추출 방법)

  • Choi, In-O;Kim, Si-Ho;Jung, Joo-Ho;Kim, Kyung-Tae;Park, Sang-Hong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.6
    • /
    • pp.557-565
    • /
    • 2016
  • It is very difficult to intercept the missiles because of the small radar cross-section and the high maneuverability. In addition, due to the decoy with the similar motion parameters, additional features other than those of the translation motion parameters need to be developed. In this paper, for the successful recognition of missiles, we propose an efficient method to extract micro-motion parameters and scatterers of the missile engaged in the micro motion. The proposed method extracts motion parameters and scatterers by using the matching score between the modeled micro-Doppler function and the time-frequency binary image as a cost function. Simulation results using a target composed of the point scatterer show the parameters and the scatterers were accurately extracted.

A Study of Spray Characteristics for the Slinger Injector System of Micro Turbo Jet Engine (초소형 터보제트엔진 슬링거 인젝터의 분무특성)

  • Choi, Hyun-Kyung;Choi, Seong-Man;Lee, Dong-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.354-358
    • /
    • 2007
  • An experimental study was performed to understand spray characteristics of the slinger injector. system for the micro turbojet engine. In this fuel injection system, fuel is sprayed and atomized in the combustor by centrifugal forces of engine shaft. This experimental apparatus consist of a high speed rotating Spindle, slinger injector, pressure tank and acrylic case. The droplet size and velocity were measured by PDPA(Phase Doppler Particle Analyzer) and spray was visualized by using Nd-Yag laser-based flash photography. From the test results, the droplet size(SMD) is largely affected to rotational speed, mass flow rate and the number of injection orifice. From the this experimental study, we could understand the spray characteristics of the slinger injection system and obtain the optimum shape of the slinger injector nozzle which is suitable for the micro turbojet engine.

  • PDF

Modeling Method of Receiving Radar Signals from Warhead and Decoy with Micro-Motion (미세운동을 가지는 탄두 및 기만체의 새로운 레이다 수신신호 모델링 방법)

  • Choi, In-Oh;Park, Sang-Hong;Kang, Ki-Bong;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.3
    • /
    • pp.243-251
    • /
    • 2019
  • Recently, several studies were conducted on the micro-Doppler(MD) phenomenon to identify a warhead from decoys. Both, the warhead and decoy, can be modeled as various shapes and maneuver with their own micro-motion. Their MD phenomenon can be demonstrated by amplitude modulation and phase modulation. Most studies have utilized approximate solutions to express the amplitude modulation regardless of various warhead and decoy shapes. However, the exact solution of the amplitude modulation is required for more effective warhead identification. In this study, we proposed a new modeling method of receiving radar signals from warheads and decoys based on physical optics. The proposed solution was evaluated using an electromagnetic prediction technique and computer-aided design models.

Application of Light Collecting Probe with High Spatial Resolution to Spark-Ignited Spherical Spray Flames

  • Yang, Young-Joon;Akamatsu, Fumiteru;Katsuki, Masashi
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.2058-2065
    • /
    • 2004
  • A light collecting probe named Multi-color Integrated Cassegrain Receiving Optics (MICRO) is applied to spark-ignited spherical spray flames to obtain the flame propagation speed in freely falling droplet suspension produced by an ultrasonic atomizer. Two MICRO probes are used to monitor time-series signals of OH chemiluminescence from two different locations in the flame. By detecting the arrival time difference of the propagating flame front, the flame propagation speed is calculated with a two-point delay-time method. In addition, time-series images of OH chemiluminescence are simultaneously obtained by a high-speed digital CCD camera to ensure the validity of the two-point delay-time method by the MICRO system. Furthermore, the relationship between the spray properties measured by phase Doppler anemometer (PDA) and the flame propagation speed are discussed with three different experimental conditions by changing the fuel injection rate. It was confirmed that the two-point delay-time method with two MICRO probes is useful and convenient to obtain the flame propagation speed and that the flame propagation speed depends on the spray properties.

Application of Light Collecting Probe with High Spatial Resolution to Spark-Ignited Spherical Spray Flames (불꽃점화 구형분무화염에서 고공간 분해능을 가진 집광프로브의 응용)

  • Yang Young-Joon
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.20-25
    • /
    • 2004
  • In order to obtain the flame Propagation speed in freely falling droplet suspension Produced by an ultrasonic atomizer, a light collecting probe named Multi-color Integrated Cassegrain Receiving Optics (MICRO) is applied to spark-ignited spherical spray flames. Two MICRO probes are used to monitor time-series signals of OH chemilumine-scence from two different locations in the flame. The flame propagation speed is calculated by detecting the arrival time difference of the propagating flame front. In addition, time-series images of OH chemiluminescence are simultaneously obtained by a high-speed digital CCD camera to ensure the validity of the MICRO system. Furthermore, relationship between the spray properties measured by phase Doppler anemometer (PDA) and the flame propagation speed are discussed with k different experimental conditions by changing the fuel injection rate. It was confirmed that the MICRO probe system was very useful and convenient to obtain the flame propagation speed and that the flame propagation speed was different depending on the spray properties.

Research on the drone detection based on the radar (레이다 기반의 드론 탐지 기법 연구)

  • Moon, Minjung;Song, Kyungmin;Yu, Sujin;Sim, Hyunseok;Lee, Wookyung
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.2
    • /
    • pp.99-103
    • /
    • 2017
  • Recently, acccording to price decline and miniaturization of drone, it is increased dramatically that drone usage in various category including military and private sectors. In accordance with popular usage, There is a increasing risk of safety accident, national security and public privacy problem. Hence there is a high demand for study and analysis applicable to the related technology and anti-drone method including drone detection and jamming. In general, it is extremely difficult to detect and recognize drones using conventional sensors. In this paper, we classify drone detection technology and Drone detection experiments are performed using CW RADAR to obtain and analyze micro-doppler pattern. This preliminary study aims to provide fundamental theory on radar drone detection and experimental test results such that in-depth anti-drone technology can be established in future.