• Title/Summary/Keyword: Micro-cutting

Search Result 378, Processing Time 0.032 seconds

Characteristics of damaged layer in high speed end milling (고속 엔드밀 가공에서 가공변질층의 특성)

  • 김동은
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.326-331
    • /
    • 2000
  • In this study, residual stress was investigated experimentally to evaluate damaged layer in high-sped machining. In machining difficult-to-cut material, residual stress remaining in machined surface was mainly speared as compressive stress. The scale of this damaged layer depends upon cutting speed, feed per tooth and radial cutting depth. Damaged layer was measured by optical microscope. The micro-structure of damaged layer was a mixed maternsite and austenite. depth of damaged layer is increased with increasing of cutting temperature, cutting force and radial depth. On the other hand, that is slightly decreased with decreasing of cutting force. The increase of tool wear causes a shift of the maximum residual stress in machined surface layer.

  • PDF

Machining Process for Micro Pyramid Pattern Mold (미세 피라미드 패턴 금형 가공공정 연구)

  • Je, T.J.;Shin, Y.J.;Lee, E.S.;Choi, D.S.;Hong, S.M.;Kang, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.55-59
    • /
    • 2007
  • Technologies of super-precision micro pattern mold machining and high-performance optical films manufacturing using thereof forms the basis of recent display industries which have developed remarkably. Especially, it is the light guide plates and high luminous intensity prism sheets at BLU or FLU in LCD and lenses at virtual keyboard's display to be manufactured by micro machining technology. One way the industry requires to do that is by developing high-performance light guide plates or films which are existing light guide plates, diffusion films and luminance enhancement prism films all in one. In this research effort, basic processing of the micro pyramid structure by shaping method is proposed. Experiments of mold machining of pitch $20{\mu}m$ tetrahedral pyramid and pitch $100{\mu}m$ trihedral pyramid using a $90^{\circ}$ diamond tool were conducted to identify a variety of machining features, such as cutting forces, conditions of the surface, shapes of chips, and influence of materials.

  • PDF

Influence upon Machining Accuracy of Micro-Pattern Roll Mold Processed by Temperature Variation (미세 패턴 롤 금형 가공시스템의 온도변화가 가공정밀도에 미치는 영향 연구)

  • Je, T.J.;Park, S.C.;Lee, K.W.;Noh, J.S.;Choi, D.S.;Whang, K.H.
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.107-111
    • /
    • 2009
  • Temperature variation happens in micro prism roll mold processing system during machining the prism pattern roll mold using manufacturing optical films of LCD (liquid crystal display). This temperature variation induces pitch errors of the prism patterns. The temperature variation displaces the positions of the diamond cutting tool on the roll which was coated by the copper. In order to prevent the pitch errors, the stabilizing the temperature of machining environment is needed. Therefore, the researching on the temperature variation of the ultra-precision roll mold processing system on the machining of micro prism rot 1 mold is needed. In this paper, the temperature variation of micro prism roll mold processing system is researched, the influence is analyzed, and the study for reducing the pitch errors carried out.

A Study on the PCB(Printed Circuit Board) Drilling by Air Bearing Spindle (공기 베어링 스핀들을 애용한 PCB 드릴링에 관한 연구)

  • Bae Myung-Il;Kim Sang-Jin;Kim Ki-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.15-20
    • /
    • 2005
  • This paper describes the PCB drilling using an ultra high-speed air bearing spindle system and micro drill. For this research, we have developed the ultra high-speed air bearing spindle of 125,000 rpm and made an experiment for the application possibility in the PCB drilling. In order to estimate the drilling performance, we have investigated the size and damage of drilled hole, and the wear of drill at 90,000rpm. Results are as follows; we have confirmed the possibility in the PCB drilling of air bearing spindle. In case of micro-drilling PCB at $0.1mm\sim0.3mm$, the increase in the number of drilling has resulted in a bigger size of holes and also a bigger size of damage. It has been found that the wear of micro drill tends to concentrate in the main cutting edge.

A Study on the Evaluation of Stability for Chatter Vibration by Micro Positioning Control in Turning Process (선삭가공에서 미세변위제어에 의한 채터진동의 안정성 판별에 관한 연구)

  • Chung Eui-Sik;Hwang Joon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.5
    • /
    • pp.49-54
    • /
    • 2004
  • In order to evaluate the stability of chatter vibration in turning precess, the micro-positioning cutting test with artificial tool vibration by piezoelectric actuation were carried out. In experiment, the phase lags between cutting forces and chip thickness variations were measured, and the dimensionless penetration-rate coefficient($\overline{K^*}$) which is the most important parameter on the stability for chatter vibration was calculated. The results show that$\overline{K^*}$ can be applicable to the stability criterion for regenerative chatter vibration.

Micro-hole Machining Technology for using Micro-tool (마이크로 공구를 이용한 미세 구멍 가공기술)

  • 허남환;이석우;최헌종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1897-1901
    • /
    • 2003
  • Recently, with the development of semiconductor technology the miniaturization of products as well as parts and the products with high precision are being required. In addition as a national competitive power is increasingly effected by micro part development through micro machining and the secure of micro machining technology, the study of micro machining technology is being conducted in many countries. The goal of this study is to fabricate micro tool under the size of 30$\mu\textrm{m}$ and machine micro holes through micro tool fabrication by grinding, the application of ELID to grinding wheel and the measurement of surface roughness for micro tool.

  • PDF

A Study on the Flow Velocity of Micro Channels Depending on Surface Roughness (표면 거칠기에 따른 마이크로 채널의 유속에 관한 연구)

  • Park, Hyun-Ki;Kim, Jong-Min;Hong, Min-Sung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.59-64
    • /
    • 2008
  • Micro machining can manufacture complex shapes with high accuracy. Especially, this enables wide application of micro technology in various fields. For example, micro channels allow fluid transfer, which is a widely used technology. Therefore, liquidity research of flow in micro channels and micro channel manufacturing with use of various materials and cutting conditions has very important meaning. In this study, to find out correlation between fluid velocity in micro channels and surface roughness, we manufactured micro channels using micro end-mill and dropped ethanol into micro channels. We compared several surface roughness and fluid velocity in micro channels that were created by various processing conditions. Finally, we found out relationship between fluid velocity and surface roughness in micro channels of different materials.

Ultra-precision Singulation of Micro BGA using Multi Blade (멀티블레이드를 이용한 Micro BGA의 초정밀 싱귤레이션)

  • 김성철;이은상;이해동
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.861-864
    • /
    • 1997
  • Singulation is a process that cutting for separating a chip individually after finishing packaging process(micro BGA etc.). For shortening the process of singulation, we proposed the singulation using multi-blade. This paper introduced a method of multi-blade singulation and investigated a result of application and problems. The efficiency of singulation process was improved five times better than the single-blade by the singulation using Multi-blade.

  • PDF

Studies of Prismless Type Light Guide Panel Mold Machining using Diamond Tool (다이아몬드공구에 의한 프리즘형 도광판 금형 가공기술 연구)

  • Hong S.M.;Jae T.J.;Choi D.S.;Lee E.S.;Lee D.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1597-1600
    • /
    • 2005
  • Recently, the trends of TFT-LCD are large scale and thin thickness, so, the demands of Light Guide Panel(LGP) which is able to substitute for prism sheets are appeared. Functions of LGP obtaining polarization of light of the prism sheet as well as the incidence and reflection of light are demanded. This prismless type LGP to complete functions of the existing LGP and polarization at once must be supported by micro machining technology of LGP surface. In this research, we have used the STAMPER method for the mass product and In-Line process, and the optimized conditions are established by analyzing the cutting force and conditions according to the material and processing properties when the prismless type LGP mold is fabricated. Parameters of the cutting condition were the workpiece and cutting depth.

  • PDF