• Title/Summary/Keyword: Micro-bearing

Search Result 231, Processing Time 0.026 seconds

A Study on the Flying Stability of Optical Flying Head on the Plastic Disks (플라스틱 디스크상의 부상형 광헤드의 부상안정성에 관한 연구)

  • Kim, Soo-Kyung;Yoon, Sang-Joon;Choi, Dong-Hoon;Lee, Seung-Yop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.399-402
    • /
    • 2004
  • In the optical drive system, adopting the optical flying-type head (OFH) flying on a removable plastic disk, the flying stability of the small OFH should be carefully considered to ensure the reliability for first surface recording. Additional micro actuators for focus servo are discussed for better interface of optical flying head on thin cover layered plastic disk to eliminate focus error due to the non-uniformity of cover layer thickness and the tolerance of lens assembly. This study gives two simulation results on the flying stability of the OFH. One is the dependence of the flying height and pitch angle variations on the wavelength and amplitude of disk waviness. The other is the flying stability of the slider and suspension system during the dynamic load/unload (U/UL) process.

  • PDF

Mechanical properties and microstructures of stabilised dredged expansive soil from coal mine

  • Chompoorat, Thanakorn;Likitlersuang, Suched;Sitthiawiruth, Suwijuck;Komolvilas, Veerayut;Jamsawang, Pitthaya;Jongpradist, Pornkasem
    • Geomechanics and Engineering
    • /
    • v.25 no.2
    • /
    • pp.143-157
    • /
    • 2021
  • Expansive soil is the most predominant geologic hazard which shows a large amount of shrinkage and swelling with changes in their moisture content. This study investigates the macro-mechanical and micro-structural behaviours of dredged natural expansive clay from coal mining treated with ordinary Portland cement or hydrated lime addition. The stabilised expansive soil aims for possible reuse as pavement materials. Mechanical testing determined geotechnical engineering properties, including free swelling potential, California bearing ratio, unconfined compressive strength, resilient modulus, and shear wave velocity. The microstructures of treated soils are observed by scanning electron microscopy, x-ray diffraction, and energy dispersive spectroscopy to understand the behaviour of the expansive clay blended with cement and lime. Test results confirmed that cement and lime are effective agents for improving the swelling behaviour and other engineering properties of natural expansive clay. In general, chemical treatments reduce the swelling and increase the strength and modulus of expansive clay, subjected to chemical content and curing time. Scanning electron microscopy analysis can observe the increase in formation of particle clusters with curing period, and x-ray diffraction patterns display hydration and pozzolanic products from chemical particles. The correlations of mechanical properties and microstructures for chemical stabilised expansive clay are recommended.

Assessment of flowing ability of self-compacting mortars containing recycled glass powder

  • Alipour, Pedram;Namnevis, Maryam;Tahmouresi, Behzad;Mohseni, Ehsan;Tang, Waiching
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.65-76
    • /
    • 2019
  • This paper investigates the effect of recycled glass powder (RGP) on flowing properties of self-compacting mortars (SCMs) containing different ratios of fillers and superplasticizer dosages. Fly ash (FA), nano-silica (NS), micro-silica (MS), metakaolin (MK) and rice husk ash (RHA) are used as fillers and their synergistic effect with RFP is studied. The effects of fillers and high-range water reducer (HRWR) on flowing ability of mortars are primarily determined by slump flow and V-funnel flow time tests. The results showed that for composites with a higher RGP content, the mortar flowing ability increased but tended to decrease when the composites containing 10% MK or 5% RHA. However, the flowing ability of samples incorporating 5% RGP and 10% SF or 25% FA showed an opposite result that their slump flow spread decreased and then increased with increasing RGP content. For specimens with 3% NS, the influence of RGP content on flowing properties was not significant. Except RHA and MS, the fillers studied in this paper could reduce the dosage of HRWR required for achieving the same followability. Also, the mixture parameters were determined and indicated that the flowability of mixtures was also affected by the content of sand and specific surface area of cement materials. It is believed that excess fine particles provided ball-bearing effect, which could facilitate the movement of coarse particles and alleviate the interlocking action among particles. Also, it can be concluded that using fillers in conjunction with RGP as cementitious materials can reduce the material costs of SCM significantly.

Synthesis and Preliminary Evaluation of $9-(4-[^{18}F]Fluoro-3-hydroxymethylbutyl)$ Guanine $([^{18}F]FHBG)$ in HSV1-tk Gene Transduced Hepatoma Cell (9-(4-$[^{18}F]Fluoro-3-hydroxymethylbutyl)$guanine $([^{18}F]FHBG)$의 합성과 헤르페스 단순 바이러스 티미딘 키나아제 이입 간암 세포주에서의 기초 연구)

  • Moon, Byung-Seok;Lee, Tae-Sup;Lee, Myoung-Keun;Lee, Kyo-Chul;An, Gwang-Il;Chun, Kwon-Soo;Awh, Ok-Doo;Chi, Dae-Yoon;Choi, Chang-Woon;Lim, Sang-Moo;Cheon, Gi-Jeong
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.4
    • /
    • pp.218-227
    • /
    • 2006
  • Purpose: The HSV1-tk reporter gene system is the most widely used system because of its advantage that direct monitoring is possible without the introduction of a separate reporter gene in case of HSV1-tk suicide gene therapy. In this study, we investigate the usefulness of the reporter probe (substrate), $9-(4-[^{18}F]Fluoro-3-hydroxymethylbutyl)$guanine ($[^{18}F]FHBG$) for non-invasive reporter gene imaging using PET in HSV1-tk expressing hepatoma model. Materials and Methods: Radiolabeled FHBG was prepared in 8 steps from a commercially available triester. The labeling reaction was carried out by NCA nucleophilic substitution with $K[^{18}F]/K2.2.2.$ in acetonitrile using N2-monomethoxytrityl-9-14-(tosyl)-3-monomethoxytritylmethylbutyl]guanine as a precursor, followed by deprotection with 1 N HCl. Preliminary biological properties of the probe were evaluated with MCA cells and MCA-tk cells transduced with HSV1-tk reporter gene. In vitro uptake and release-out studies of $[^{18}F]FHBG$ were performed, and was analyzed correlation between $[^{18}F]FHBG$ uptake ratio according to increasing numeric count of MCA-tk cells and degree of gene expression. MicroPET scan image was obtained with MCA and MCA-tk tumor bearing Balb/c-nude mouse model. Results: $[^{18}F]FHBG$ was purified by reverse phase semi-HPLC system and collected at around 16-18 min. Radiothemical yield was about 20-25%) (corrected for decay), radiochemical purity was >95% and specific activity was around >55.5 $GBq/{\mu}\;mol$. Specific accumulation of $[^{18}F]FHBG$ was observed in HSV1-tk gene transduced MCA-tk cells but not in MCA cells, and consecutive 1 hour release-out results showed more than 86% of uptaked $[^{18}F]FHBG$ was retained inside of cells. The uptake of $[^{18}F]FHBG$ was showed a highly significant linear correlation ($R^2=0.995$) with increasing percentage of MCA-tk numeric cell count. In microPET scan images, remarkable difference of accumulation was observed for the two type of tumors. Conclusion: $[^{18}F]FHBG$ appears to be a useful as non-invasive PET imaging substrate in HSV1-tk expressing hepatoma model.

Physical Analysis of High Strength Concrete According to Mixing Methods of Binders for Application Analysis of Pre-Mix Cement (프리믹스 시멘트의 활용성 분석을 위한 결합재의 혼합방법에 따른 고장도 콘크리트의 물성 분석)

  • Han, Cheon-Goo;Lee, Hae-Ill
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.5
    • /
    • pp.127-133
    • /
    • 2009
  • It is important to increase the strength of binders in order to enhance the strength of concrete. However, when the mineral admixture used for high strength concrete is incorporated individually, its dispersibility decreases due to the phenomenon of compaction, which reduces its fluidity and results in insufficient strength being created. To solve this problem, we can pre-mix each binder in advance to disperse a mineral admixture among binders, which will strengthen the fluidity and strength of concrete. Therefore, this study analyzed the properties of high strength concrete depending on the mix method used, to determine the effect of pre-mix cements ranging from W/B 15 to 35%. It was found that the fluidity of pre-mix increased to a level higher than that of individual mix due to its dispersion and ball bearing effect. The air content was slightly decreased from the result of individual mix due to the micro filler effect, which causes fine particles of silica-fume to fill the voids among cement particles, while the setting time of pre-mix was shorter than that of individual mix, because enhanced dispersion of pre-mix affects hydration heat time. The compressive strength of pre-mix increased due to the phenomenon of compaction of gap structure, and the variation of coefficient decreased by 1.69% on average in strength variation.

Numerical Analysis for Fault Reactivation during Gas Hydrate Production (가스하이드레이트 개발과정에서의 단층 재활성화 해석)

  • Kim, Hyung-Mok;Kim, A-Ram
    • Tunnel and Underground Space
    • /
    • v.26 no.2
    • /
    • pp.59-67
    • /
    • 2016
  • In this paper, we perform a numerical analysis to evaluate the potential of fault reactivation during gas production from hydrate bearing sediments and the moment magnitude of induced seismicity. For the numerical analysis, sequential coupling of TOUGH+Hydrate and FLAC3D was used and the change in effective stress and consequent geomechanical deformation including fault reactivation was simulated by assuming that Mohr-Coulomb shear resistance criterion is valid. From the test production simulation of 30 days, we showed that pore pressure reduction as well as effective stress change hardly induces the fault reactivation in the vicinity of a production well. We also investigated the influence of stress state conditions to a fault reactivation, and showed that normal fault stress regime, where vertical stress is relatively greater than horizontal, may have the largest potential for the reactivation. We tested one simulation that earthquake can be induced during gas production and calculated the moment magnitude of the seismicity. Our calculation presented that all the magnitudes from the calculation were negative values, which indicates that induced earthquakes can be grouped into micro-seismic and as small as hardly perceived by human beings. However, it should be noted that the current simulation was carried out using the highly simplified geometric model and assumptions such that the further simulations for a scheduled test production and commercial scale production considering complex geometric conditions may produce different results.

A Study on the Compression Characteristics of Decomposed Granite Soil Based on Single Particle Crushing Property (단입자파쇄특성에 기초한 화강풍화토의 압축특성에 관한 연구)

  • 함태규;조용성;김유성
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.103-111
    • /
    • 2004
  • There are some problems in evaluating the bearing capacity of decomposed granite soils by general equations on account of their inherent compressibility and crushability. In order to investigate this kind of the engineering characteristics on decomposed granite soils in detail, it is necessary to how the micro property of the single particle composing the granite soils, and then the relevance to the macro characteristics of the soils has to be cleared. The reason why the single particle properties are not studied is first the difficulty to find out some regulating parameters, and secondly little understanding of its significance. Furthermore, the water in the decomposed granite soils accelerates the particle crushing. Consequently, increasing of compressibility and decreasing of shear strength would occur. Actually, when the ground settlement is a big issue in the embanked ground using the decomposed granite soils, the sensitive change of compressibility due to the change of water content in the ground becomes conspicuous. In this study, the single particle strength characteristics are studied and microscopic particle shape analyses are performed. In addition the compressibility of the decomposed granite soils and water content effect on the compressibility are analysed based on the test results.

Material Analysis and Coloring Characteristics of Korean Traditional Copper-red Pigment (Jinsa) (동화(진사) 안료의 재료과학적 분석 및 발색특성)

  • Kim, Ji-Young;Cho, Hyun-Kyung;Jun, Byung-Kyu;Cho, Nam-Chul;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.27 no.1
    • /
    • pp.31-40
    • /
    • 2011
  • Copper-red (Dongwha, Jinsa) is Korean traditional inorganic pigment used for red-coloring on the porcelain surface during Goryeo and Joseon Periods. Trace amounts of copper-red porcelains are handed down because of the technical difficulty of making and coloring of the pigment. It is known that copper ore sources were extensively distributed in Korea according to old literatures and some of them are still producing copper ore at this present. Main types of copper-bearing mineral in Korea are chalcopyrite ($CuFeS_2$) and malachite ($Cu_2CO_3(OH)_2$), and they are easily collected from the ground surface. This means Korea had geographical and economic geological advantages for supplying raw material of the pigment. These two minerals showed good red-coloring in color test for porcelain pigment. As a coloring element, copper showed micro size less than $5{\mu}m$ in diameter in glaze matrix. The dispersion of copper particle is the most decisive factor for red chromaticity of copper-red porcelain, as well as copper content of the pigment.

Anti-inflammation and Anti-oxidation Effects of Gamikyejakjimo-tang Herbal Acupuncture on Pathologic Factor and MIA-induced Osteoarthritis Rat (가미계작지모탕약침(加味桂芍知母湯藥鍼)이 퇴행성관절염 병리인자 및 동물병태 모델에 미치는 영향)

  • Lee, Hyun-Jae;Park, Jung-Oh;Oh, Min-Seok
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.25 no.4
    • /
    • pp.1-20
    • /
    • 2015
  • Objectives This study was intended to clarify the anti-inflammation and anti-oxidation effects of gamikyejakjimo-tang herbal acupuncture (GKHA) for osteoarthritis. Methods Osteoarthritis was induced by injection of MIA into right knee joint cavities of rats. Rats were divided into a total of 4 groups (n=8). The 4 groups were normal group, control group, positive comparison group and expeimental group. Indomethacin and GKHA were medicated for a total of 4 weeks. After that, functions of liver and kidney by AST, ALT, creatinine, BUN, DPPH and ABTS free radical scavenging activity, ROS (reactive oxygen species) production, NO (Total Nitric oxide), IL-$1{\beta}$, IL-6, TNF-${\alpha}$ production, weight changes in the hind legs of MIA-induced osteoarthritis rat, serum PGE2, TIMP-1, MMP-2, MMP-9, LTB4, hs-CRP, and white blood cells, neutrophils, lymphocytes, monocytes were measured. The volume of cartilage was observed by micro CT arthrography. H&E and Safranin-O staining were used to examine the injury of synovial tissue. Results 1. In the hind leg weight bearing measurement, level of weight was increased. 2. AST, ALT, BUN, creatinine were decreased. 3. The production of total white blood cell was decreased, and the production of neutrophils, lymphocytes, monocytes were significantly decreased. 4. The production of NO, PGE2, TIMP-1, MMP-2, MMP-9, LTB4 were significantly decreased, and the production of hs-CRP was also decreased but with no significance. 5. The cartilage volume was significantly increased. 6. In H&E staining and Safranin-O staning, the cartilage cell appeared to be proliferated, and proteoglycans appeared to be increased. Conclusions Based on the results above, Gamikyejakjimo-tang Herbal Acupuncture has anti-oxidation and anti-inflammation effects, which leads to suppressing the underlying causes and the progression of osteoarthritis.

Thermal Insulation and Flame Retardant Properties of Cement Based Super Light-weight Inorganic Thermal Insulation using 100㎛ Grade Glass Bubble (100㎛급 글라스 버블 혼입 시멘트계 초경량 무기 단열재의 단열 및 난연특성)

  • Son, Bae-Geun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.642-649
    • /
    • 2021
  • Energy saving standard for buildings are strengthened, the application of exterior insulation finishing system and thickness of insulation materials are increasing. Most buildings with exterior insulation finishing system is applied organic insulating material. Organic insulating material have workability, economic feasibility, reduction in construction cost, and excellent thermal insulation performance. However, Organic insulating material is very vulnerable to heat, so when a fire occurs, rapid fire spread and toxic gas are generated, causing many casualties. Inorganic insulating material can be non-combustible performance, but it is heavy and has low thermal insulation performance. Mineral wool has higher thermal insulation performance than other types of inorganic insulating material, but mineral wool is disadvantageous to workability and vulnerable to moisture. Glass bubble are highly resistant to water and chemically stable substances. In addition, the density of the glass bubble is very low and the particles are spherical, fluidity is improved by the ball bearing effect. Glass bubbles can be used with cement-based ino rganic insulating material to impro ve the weight and thermal insulatio n perfo rmance o f cement-based inorganic insulation. This study produced a inorganic insulating materials were manufactured using cement-based materials and glass bubble. In order to evaluate the insulation performance and flame retardant performance of cement-based super light-weight inorganic insulating materials using with glass bubble, insulation performance or flame retardant and non-combustible performance were evaluated after manufacturing insulating materials using micro cement and two types of glass bubbles. From the test result, Increasing the mixing ratio of glass bubbles improved the insulation performance of cement-based super light-weight inorganic insulating materials, and when the mixing ratio of glass bubbles was 10%, it sho wed sufficient flame retardant and no n-co mbustible perfo rmance.