• Title/Summary/Keyword: Micro-Structure

Search Result 2,337, Processing Time 0.029 seconds

Bond Properties of GFRP Rebar with Cover Thickness and Volume Fraction of Steel Fiber (강섬유 혼입률과 피복두께에 따른 GFRP 보강근의 부착특성)

  • Choi, Yun-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.761-768
    • /
    • 2012
  • The purpose of this study is to investigate bond properties of GFRP used in SFRC (Steel fiber reinforced concrete) and normal concrete. The experimental variables were rebar diameter (D13, D16), steel fiber volume fraction (0~2%) and cover thickness ($1.5d_b$, $5.4d_b$). The experimental results showed a different failure mode depending on the cover thickness. Through the tested specimens, splitting failure occurred for the specimens with small cover thickness and pull out failure occurred in the specimens with large cover thickness. Introduction of steel fiber caused the specimens to have more ductile behavior of bond stresss-lip after peak stress, but they did not increase the bond strength significantly. These failure modes were shown in both steel reinforcement and GFRP. However, from the difference of micro structure of bond failure mechanism between steel rebar and GFRP rebar, more ductile behavior was observed in GFRP-specimens after maximum bond strength was reached.

Development of Chip-based Precision Motion Controller

  • Cho, Jung-Uk;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1022-1027
    • /
    • 2003
  • The Motion controllers provide the sophisticated performance and enhanced capabilities we can see in the movements of robotic systems. Several types of motion controllers are available, some based on the kind of overall control system in use. PLC (Programmable Logic Controller)-based motion controllers still predominate. The many peoples use MCU (Micro Controller Unit)-based board level motion controllers and will continue to in the near-term future. These motion controllers control a variety motor system like robotic systems. Generally, They consist of large and complex circuits. PLC-based motion controller consists of high performance PLC, development tool, and application specific software. It can be cause to generate several problems that are large size and space, much cabling, and additional high coasts. MCU-based motion controller consists of memories like ROM and RAM, I/O interface ports, and decoder in order to operate MCU. Additionally, it needs DPRAM to communicate with host PC, counter to get position information of motor by using encoder signal, additional circuits to control servo, and application specific software to generate a various velocity profiles. It can be causes to generate several problems that are overall system complexity, large size and space, much cabling, large power consumption and additional high costs. Also, it needs much times to calculate velocity profile because of generating by software method and don't generate various velocity profiles like arbitrary velocity profile. Therefore, It is hard to generate expected various velocity profiles. And further, to embed real-time OS (Operating System) is considered for more reliable motion control. In this paper, the structure of chip-based precision motion controller is proposed to solve above-mentioned problems of control systems. This proposed motion controller is designed with a FPGA (Field Programmable Gate Arrays) by using the VHDL (Very high speed integrated circuit Hardware Description Language) and Handel-C that is program language for deign hardware. This motion controller consists of Velocity Profile Generator (VPG) part to generate expected various velocity profiles, PCI Interface part to communicate with host PC, Feedback Counter part to get position information by using encoder signal, Clock Generator to generate expected various clock signal, Controller part to control position of motor with generated velocity profile and position information, and Data Converter part to convert and transmit compatible data to D/A converter.

  • PDF

Mechanical Properties of Cement Grout Including Conductive Materials (전도성 재료를 포함한 시멘트 그라우트의 역학적 특성)

  • Choi, Hyojun;Cho, Wanjei;Hwang, Bumsik;Yune, Chanyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.12
    • /
    • pp.35-41
    • /
    • 2020
  • Recently, underground spaces have been developed variously due to the concentration of the building structure in downtown area and reconstruction of the apartment. However, various problems such as differential settlement are occurring in the waterproof and reinforcement construction. In grouting method, which is frequently used for the ground reinforcement, quality control was performed by measuring the injection quantity of grouting materials and performing laboratory tests using boring samples, but it is difficult to determine whether the ground reinforcement has been performed properly during the construction stage. In order to solve this problem, a research is needed to carry out quality control by measuring electric resistivity after grouting is performed using grouting materials mixed with conductive materials. In this research, as a basic study of the new grouting method using conductive materials, uniaxial compression tests were performed using cement specimen with 0, 3, 5, 7% of carbon fiber to evaluate the effect of conductive material on the performance of grouting material. Based on the test results, the uniaxial compressive strength is increased with the mixed proportion of the carbon fiber increase. Furthermore, the carbon fiber can also affect on the early-strength of the grouting materials.

Sol-Gel Synthesis, Crystal Structure, Magnetic and Optical Properties in ZnCo2O3 Oxide

  • Das, Bidhu Bhusan;Barman, Bittesh
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.453-458
    • /
    • 2019
  • Synthesis of ZnCo2O3 oxide is performed by sol-gel method via nitrate-citrate route. Powder X-ray diffraction (XRD) study shows monoclinic unit cell having lattice parameters: a = 5.721(1) Å, b = 8.073(2) Å, c = 5.670(1) Å, β = 93.221(8)°, space group P2/m and Z = 4. Average crystallite sizes determined by Scherrer equation are the range ~14-32 nm, whereas SEM micrographs show nano-micro meter size particles formed in ZnCo2O3. Endothermic peak at ~798 K in the Differential scanning calorimetric (DSC) trace without weight loss could be due to structural transformation and the endothermic peak ~1143 K with weight loss is due to reversible loss of O2 in air atmosphere. Energy Dispersive X-ray (EDX) analysis profile shows the presence of elements Zn, Co and O which indicates the purity of the sample. Magnetic measurements in the range of +12 kOe to -12 kOe at 10 K, 77 K, 120 K and at 300 K by PPMS-II Physical Property Measurement System (PPMS) shows hysteresis loops having very low values of the coercivity and retentivity which indicates the weakly ferromagnetic nature of the oxide. Observed X-band EPR isotropic lineshapes at 300 K and 77 K show positive g-shift at giso ~2.230 and giso ~2.217, respectively which is in agreement with the presence of paramagnetic site Co2+(3d7) in the oxide. DC conductivity value of 2.875 ×10-8 S/cm indicates very weakly semiconducting nature of ZnCo2O3 at 300 K. DRS absorption bands ~357 nm, ~572 nm, ~619 nm and ~654 nm are due to the d-d transitions 4T1g(4F)→2Eg(2G), 4T1g(4F)→4T1g(4P), 4T1g(4F)→4A2g(4F), 4T1g(4F)→4T2g(4F), respectively in octahedral ligand field around Co2+ ions. Direct band gap energy, Eg~ 1.5 eV in the oxide is obtained by extrapolating the linear part of the Tauc plot to the energy axis indicates fairly strong semiconducting nature of ZnCo2O3.

Multi-scale Analysis of Thin film Considering Surface Effects (표면효과를 고려한 박막구조의 멀티스케일 해석)

  • Cho, Maeng-Hyo;Choi, Jin-Bok;Jung, Kwang-Sub
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.287-292
    • /
    • 2007
  • In general, the response of bulk material is independent of its size when it comes to considering classical elasticity theory. Because the surface to bulk ratio of the large solids is very small, the influence of surface can be negligible. But the surface effect plays important role as the surface to bulk ratio becomes larger, that is, the contribution of the surface effect must be considered in nano-size elements such as thin film or beam structure. Molecular dynamics computation has been a conventional way to analyze these ultra-thin structures but this method is limited to simulate on the order of $10^6{\sim}10^9$ atoms for a few nanoseconds, and besides, very time consuming. Analysis of structures in submicro to micro range(thin-film, wire etc.) is difficult with classical molecular dynamics due to the restriction of computing resources and time. Therefore, in this paper, the continuum-based method is considered to simulate the overall physical and mechanical properties of the structures in nano-scale, especially, for the thin-film.

A Low-pass filter design for suppressing the harmonics of 2.4GHz RFID tag (2.4GHz RFID 태그용 고조파 억제를 위한 저역통과필터의 설계)

  • Cho, Young Bin;Kim, Byung-Soo;Kim, Jang-Kwon
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.3
    • /
    • pp.59-64
    • /
    • 2002
  • In the RFID system using ISM-band, The tag mounted at the object has used the DC power by rectifying the RF signals of the small antenna for operating the micro-controller and memory. The performance of the tag would be reduced because of the second harmonics generated by the nonlinearity of the semiconductor and the spurious signal excited the high order mode of the antenna. This paper has realized the novel type low-pass filter with "the Stub-I type DGS slot structure" to improve the efficiency of the tag by suppressing the harmonics. The optimized frequency character at the pass-band/stop-band has obtained by tuning the stub width and slit width of I type slot. The measured result of the LPF has the cutoff frequency 3.25 GHz, the insertion loss about -0.29~-0.3 dB at pass-band 2.4 GHz~2.5 GHz, the return loss about -27.688~-33.665 dB at pass-band with a good performance, and the suppression character is about -19.367 dB at second harmonics frequency 4.9 GHz. This DGS LPF may be applied the various application as the RFID, WLAN to improve the efficiency of the system by suppressing the harmonics and spurious signals. 

Hybrid Fabrication of Screen-printed Pb(Zr,Ti)O3 Thick Films Using a Sol-infiltration and Photosensitive Direct-patterning Technique (졸-침투와 감광성 직접-패턴 기술을 이용하여 스크린인쇄된 Pb(Zr,Ti)O3 후막의 하이브리드 제작)

  • Lee, J.-H.;Kim, T.S.;Park, H.-H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.83-89
    • /
    • 2015
  • In this paper, we propose a fabrication technique for enhanced electrical properties of piezoelectric thick films with excellent patterning property using sol-infiltration and a direct-patterning process. To achieve the needs of high-density and direct-patterning at a low sintering temperature (< $850^{\circ}C$), a photosensitive lead zirconate titanate (PZT) solution was infiltrated into a screen-printed thick film. The direct-patterned PZT films were clearly formed on a locally screen-printed thick film, using a photomask and UV light. Because UV light is scattered in the screen-printed thick film of a porous powder-based structure, there are needs to optimize the photosensitive PZT sol infiltration process for obtaining the enhanced properties of PZT thick film. By optimizing the concentration of the photosensitive PZT sol, UV irradiation time, and solvent developing time, the hybrid films prepared with 0.35 M of PZT sol, 4 min of UV irradiation and 15 sec solvent developing time, showed a very dense with a large grain size at a low sintering temperature of $800^{\circ}C$. It also illustrated enhanced electrical properties (remnant polarization, $P_r$, and coercive field, $E_c$). The $P_r$ value was over four times higher than those of the screen-printed films. These films integrated on silicon wafer substrate could give a potential of applications in micro-sensors and -actuators.

Fabrication of Vertically Oriented ZnO Micro-crystals array embedded in Polymeric matrix for Flexible Device (수열합성을 이용한 ZnO 마이크로 구조의 성장 및 전사)

  • Yang, Dong Won;Lee, Won Woo;Park, Won IL
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.31-37
    • /
    • 2017
  • Recently, there has been substantial interest in flexible and wearable devices whose properties and performances are close to conventional devices on hard substrates. Despite the advancement on flexible devices with organic semiconductors or carbon nanotube films, their performances are limited by the carrier scattering at the molecular to molecular or nanotube-to-nanotube junctions. Here in this study, we demonstrate on the vertical semiconductor crystal array embedded in flexible polymer matrix. Such structures can relieve the strain effectively, thereby accommodating large flexural deformation. To achieve such structure, we first established a low-temperature solution-phase synthesis of single crystalline 3D architectures consisting of epitaxially grown ZnO constituent crystals by position and growth direction controlled growth strategy. The ZnO vertical crystal array was integrated into a piece of polydimethylsiloxane (PDMS) substrate, which was then mechanically detached from the hard substrate to achieve the freestanding ZnO-polymer composite. In addition, the characteristics of transferred ZnO were confirmed by additional structural and photoluminescent measurements. The ZnO vertical crystal array embedded in PDMS was further employed as pressure sensor that exhibited an active response to the external pressure, by piezoelectric effect of ZnO crystal.

Biomimetic Gyroscope Integrated with Actuation Parts of a Robot Inspired by Insect Halteres (평형곤을 모사한 생체모방형 구동부 일체형 각속도 센서)

  • Jeong, Mingi;Kim, Jisu;Jang, Seohyeong;Lee, Tae-Jae;Shim, Hyungbo;Ko, Hyoungho;Cho, Kyu-Jin;Cho, Dong-Il Dan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.705-709
    • /
    • 2016
  • Micro-electro-mechanical systems (MEMS) gyroscopes are widely used in various robot applications. However, these conventional gyroscopes need to vibrate the proof mass using a built-in actuator at a fixed resonance frequency to sense the Coriolis force. When a robot is not moving, the meaningless vibration of the gyroscope wastes power. In addition, this continuous vibration makes the sensor vulnerable to external sound waves with a frequency close to the proof-mass resonance frequency. In this paper, a feasibility study of a new type of gyroscope inspired by insect halteres is presented. In dipterous insects, halteres are a biological gyroscope that measures the Coriolis force. Wing muscles and halteres are mechanically linked, and the halteres oscillate simultaneously with wing beats. The vibrating haltere experiences the Coriolis force if the insect is going through a rotational motion. Inspired by this haltere structure, a gyroscope using a thin mast integrated with a robot actuation mechanism is proposed. The mast vibrates only when the robot is moving without requiring a separate actuator. The Coriolis force of the mast can be measured with an accelerometer installed at the tip of the mast. However, the signal from the accelerometer has multiple frequency components and also can be highly corrupted with noise, such that raw data are not meaningful. This paper also presents a suitable signal processing technique using the amplitude modulation method. The feasibility of the proposed haltere-inspired gyroscope is also experimentally evaluated.

Physical Analysis of High Strength Concrete According to Mixing Methods of Binders for Application Analysis of Pre-Mix Cement (프리믹스 시멘트의 활용성 분석을 위한 결합재의 혼합방법에 따른 고장도 콘크리트의 물성 분석)

  • Han, Cheon-Goo;Lee, Hae-Ill
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.5
    • /
    • pp.127-133
    • /
    • 2009
  • It is important to increase the strength of binders in order to enhance the strength of concrete. However, when the mineral admixture used for high strength concrete is incorporated individually, its dispersibility decreases due to the phenomenon of compaction, which reduces its fluidity and results in insufficient strength being created. To solve this problem, we can pre-mix each binder in advance to disperse a mineral admixture among binders, which will strengthen the fluidity and strength of concrete. Therefore, this study analyzed the properties of high strength concrete depending on the mix method used, to determine the effect of pre-mix cements ranging from W/B 15 to 35%. It was found that the fluidity of pre-mix increased to a level higher than that of individual mix due to its dispersion and ball bearing effect. The air content was slightly decreased from the result of individual mix due to the micro filler effect, which causes fine particles of silica-fume to fill the voids among cement particles, while the setting time of pre-mix was shorter than that of individual mix, because enhanced dispersion of pre-mix affects hydration heat time. The compressive strength of pre-mix increased due to the phenomenon of compaction of gap structure, and the variation of coefficient decreased by 1.69% on average in strength variation.