• Title/Summary/Keyword: Micro-Scratch

Search Result 82, Processing Time 0.025 seconds

EFFECTS OF SURFACE COATING ON THE SCREW RELEASE OF DENTAL IMPLANT SCREW (치과용 임플란트 나사의 풀림에 미치는 표면코팅 효과)

  • Koo Cheol-In;Chung Chae-Heon;Choe Han-Cheol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.2
    • /
    • pp.210-225
    • /
    • 2004
  • Statement of problem: Implant screw loosening has been remained problem in restorative practices. Surface treatment of screw plays a role of preventing screw from loosening in implant screw mechanism. Purpose : The purpose of this study was to investigate surface characteristics of TiN and ZrN film ion plated screw with titanium and gold alloy screw and to evaluate wear resistance, surface roughness, and film adhesion on screw surface using various instruments. Material and methods : GoldTite screws and titanium screws provided by 3i (Implant Innovation, USA) and TorqTite screws or titanium screws by Steri-Oss (Nobel Biocare, USA) and gold screws and titanium screws by AVANA (Osstem Implant, korea) were selected. Ion plating which is much superior to other surface modification techniques was carried out for gold screws and titanium screws using Ti and Zr coating materials with nitrogen gas. Ion nitrided surface of each abutment screw was observed with field emission scanning electron microscopy (FE-SEM, micro-diamond scratch tester, vickers hardness tester, and surface roughness tester. Results : 1) The surface of gold screw and GoldTite is more smooth than ones of other kinds of non coated screw. 2) The ZrN and TiN coated surface is the more smooth than ones of other kinds of screw. 3) The hardness of TiN and ZrN coated surface showed higher than that of non coated surface. 4) The TiN coated titanium screw and ZrN coated gold screw have a good wear resistance and adhesion on the surface. 5) The surface of ZrN coated screw showed low surface roughness compared with the surface of TiN coated screw. Conclusion : It is considered that the TiN and ZrN coated screw which would prevent a screw from loosening can be applicable to implant system and confirmed that TiN and ZrN film act as lubricant on surface of screw due to decrease of friction for recycled tightening and loosening.

Effects of Consumable on STI-CMP Process (STI-CMP 공정에서 Consumable의 영향)

  • Kim, Sang-Yong;Park, Sung-Woo;Jeong, So-Young;Lee, Woo-Sun;Kim, Chang-Il;Chang, Eui-Goo;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.185-188
    • /
    • 2001
  • Chemical mechanical polishing(CMP) process is widely used for global planarization of inter-metal dielectric (IMD) layer and inter-layer dielectric (ILD) for deep sub-micron technology. However, as the IMD and ILD layer gets thinner, defects such as micro-scratch lead to severe circuit failure, which affect yield. In this paper, for the improvement of CMP process, deionized water (DIW) pressure, purified $N_2 \; (PN_2)$ gas, slurry filter and high spray bar were installed. Our experimental results show that DIW pressure and $PN_2$ gas factors were not related with removal rate, but edge hot-spot of patterned wafer had a serious relation. Also, the filter installation in CMP polisher could reduce defects after CMP process, it is shown that slurry filter plays an important role in determining consumable pad lifetime. The filter lifetime is dominated by the defects. However, the slurry filter is impossible to prevent defect-causing particles perfectly. Thus, we suggest that it is necessary to install the high spray bar of de-ionized water (DIW) with high pressure, to overcome the weak-point of slurry filter. Finally, we could expect the improvements of throughput, yield and stability in the ULSI fabrication process.

  • PDF

Surface Compatibility and Electrochemical Behaviors of Zirconia Abutment for Prosthodontics (보철용 지르코니아 어버트먼트의 표면적합도와 전기화학적 거동)

  • Park, K.H.;Jeong, Y.H.;Kim, W.G.;Choe, H.C.;Kim, M.S.
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.1
    • /
    • pp.41-46
    • /
    • 2009
  • The fit between dental implant fixture and zirconia abutment is affected by many variables during the fabrication process by CAD/CAM program and milling working. The purpose of this study was to evaluate the surface compatibility and electrochemical behaviors of zirconia abutment for prosthodontics. Zirconia abutments were prepared and fabricated using zirconia block and milling machine. For stabilization of zirconia abutments, sintering was carried out at $1500^{\circ}F$ for 7 hrs. The specimens were cut and polished for gap observation. The gap between dental implant fixture and zirconia abutment was observed using field-emission scanning electron microscopy (FE-SEM). The hardness and corrosion resistance of zirconia abutments were observed with vickers hardness tester and potentiostat. The gap between dental implant fixture and zirconia abutment was $5{\sim}12{\mu}m$ for small gap, and $40{\sim}60{\mu}m$ for large gap. The hardness of zirconia surface was 1275.5 Hv and showed micro-machined scratch on the surface. The corrosion potentials of zirconia abutment/fixture was .290 mV and metal abutment/fixture was .280 mV, whereas $|E_{pit}-E_{corr}|$ of zirconia abutment/fixture (172 mV) was higher than that of metal abutment/fixture (150 mV). The corrosion morphology of metal abutment/fixture showed the many pit on the surface in compared with zirconia abutment/fixture.

Effect of the Various Curing Temperatures on the Finishability of Concrete using Aluminum Form (알루미늄 거푸집을 이용한 콘크리트의 양생온도변화에 따른 표면마감성에 관한 연구)

  • Lee, Dong-Gyu;Kim, Tae-Cheong;Baek, Dae-Hyun;Lee, Seong-Hoon;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.969-972
    • /
    • 2008
  • This study investigated the effect of the fundamental condition such as release agent, form conditions and types to the surface of concrete with aluminum form on the various temperatures. On the observation with the naked eyes, coated plywood and aluminum form without a scratch showed similar result, and the surface quality of the concrete with aluminum form was gradually decreased corresponding to the increase of the temperature.For the surface roughness, there is no remarkable tendency according to the temperature. However, the difference in accordance with release agent occurred.As void on the surface corresponding to the various temperature, the micro voids ranged $0.1{\sim}1mm$ were increased corresponding to the increasing temperature, so it was confirmed that the chemical reaction wae accelerated. And the voids of the other range also increased. the fundamental condition such as release agent, form conditions and types

  • PDF

Effects of Various Facility Factors on CMP Process Defects (CMP 공정의 설비요소가 공정 결함에 미치는 영향)

  • Park, Seong-U;Jeong, So-Yeong;Park, Chang-Jun;Lee, Gyeong-Jin;Kim, Gi-Uk;Seo, Yong-Jin
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.5
    • /
    • pp.191-195
    • /
    • 2002
  • Chemical mechanical Polishing (CMP) process is widely used for the global planarization of inter-metal dielectric (IMD) layer and inter-layer dielectric (ILD) for deep sub-micron technology. However, as the IMD and ILD layer gets thinner, defects such as micro-scratch lead to severe circuit failure, which affect yield. In this paper, for the improvement of CMP process, deionized water (DIW) pressure, purified $N_2$ ($PN_2$) gas, point of use (POU) slurry filler and high spray bar (HSB) were installed. Our experimental results show that DW pressure and P$N_2$ gas factors were not related with removal rate, but edge hot-spot of patterned wafer had a serious relation. Also, the filter installation in CMP polisher could reduce defects after CMP process, it is shown that slurry filter plays an important role in determining consumable pad lifetime. The filter lifetime is dominated by the defects. However, the slurry filter is impossible to prevent defect-causing particles perfectly. Thus, we suggest that it is necessary to install the high spray bar of de-ionized water (DIW) with high pressure, to overcome the weak-point of slurry filter Finally, we could expect the improvements of throughput, yield and stability in the ULSI fabrication process.

Influence of Anodic Oxidation Film Formed on Titanium onto Cell Attachment and Proliferation (양극 산화에 의해 티타늄 표면에 형성된 산화 피막이 세포 부착 및 성장에 미치는 영향)

  • Noh, Se-Ra;Lee, Yong-Ryeol;Song, Ho-Jun;Park, Yeong-Joon
    • Korean Journal of Materials Research
    • /
    • v.16 no.10
    • /
    • pp.606-613
    • /
    • 2006
  • This study was purposed to evaluate the influence of anodically oxidized film on titanium (Ti) onto MG-63 osteoblast-like cell attachment and activity. Only scratch lines created by polishing were seen in ASR and ANO-1 groups. About $1.5{\mu}m$-thick homogeneous oxide film which has pores of about $0.5{\mu}m$ diameter were formed in ANO-12. The crystalline structure of the oxide films formed by anodization in phosphoric acid electrolyte was $TiP_2O_7$. The total protein amounts of ANO-1 and ANO-12 groups showed higher values of maximum protein amount than that of AS-R group. At 3 days of incubation, total protein amount showed higher value in ANO-2 when comparing to that of AS-R (p<0.05). Based on the results of ALPase activity test, the degree of MG-63 cell differentiation for initial mineralization matrix formation was similar. For all the test groups after 1 day of incubation, MG-63 cells grew healthily in mono-layer with dendritic extensions. After incubation for 3 days, the specimen surfaces were covered more densely by cells, and numerous micro filaments were extruding to the extracellular matrix.

Adhesive Behaviors of the Aluminum Alloy-Based CrN and TiN Coating Films for Ocean Plant

  • Murakami, Ri-Ichi;Yahya, Syed Qamma Bin
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.2
    • /
    • pp.106-115
    • /
    • 2012
  • In the present study, TiN and CrN films were coated by arc ion plating equipment onto aluminum alloy substrate, A2024. The film thickness was about 4.65 ${\mu}m$. TiN and CrN films were analyzed by X-ray diffraction and energy dispersive X-ray equipments. The Young's modulus and the micro-Vickers hardness of aluminum substrate were modified by the ceramic film coatings. The difference in Young's modulus between substrate and coating film would affect on the wear resistance. The critical load, Lc, was 75.8 N for TiN and 85.5 N for CrN. It indicated from the observation of optical micrographs for TiN and CrN films that lots of cracks widely propagated toward the both sides of scratch track in the early stage of MODE I. TiN film began to delaminate completely at MODE II stage. The substrate was finally glittered at MODE III stage. For CrN film, a few crack can be observed at MODE I stage. The delamination of film was not still occurred at MODE II and then was happened at MODE III. This agrees with critical load measurement which the adhesive strength was greater for CrN film than for TiN film. Consequently, it was difficult for CrN to delaminate because the adhesive strength was excellent against Al substrate. The wear process, which the film adheres and the ball transfers, could be enhanced because of the increase in loading. The wear weight of ball was less for CrN than for TiN. This means that the wear damage of ball was greater for TiN than for CrN film. It is also obvious that it was difficult to delaminate because the CrN coating film has high toughness. The coefficient of friction was less for CrN coating film than for TiN film.

The Effect of Class Practice-oriented Coding Instructor Training Course on the Creativity Improvement of Preliminary Coding Instructors (수업 실습 중심 코딩 강사 양성 과정이 예비 코딩 강사의 창의성 향상에 미치는 효과)

  • Kim, Yongmin
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.6
    • /
    • pp.563-572
    • /
    • 2020
  • In this study, through a total of 73 lectures and practice for 14 days, preliminary coding instructors developed teaching materials for elementary and junior high school students and verified the effectiveness of the coding instructor training course. The coding instructor training course was hosted by the "◯◯ Creative Economy Innovation Center" for 25 preliminary coding instructors, and was conducted at the "◯◯ University", and 15 elementary and junior high school students who participated in the class were openly recruited. The teaching materials were developed according to the procedure of the ADDIE model based on the results of the pre-requirement analysis conducted with 20 incumbent elementary school teachers majoring in computer education. As a result of running a training course for coding instructors focusing on classroom practice, it was found that the creativity of pre-coding instructors improved.

Development of Abrasive Film Polishing System for Cover-Glass Edge using Multi-Body Dynamics Analysis (다물체 동역학 해석을 이용한 커버글라스 Edge 연마용 Abrasive Film Polishing 시스템 개발)

  • Ha, Seok-Jae;Cho, Yong-Gyu;Kim, Byung-Chan;Kang, Dong-Seong;Cho, Myeong-Woo;Lee, Woo-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.7071-7077
    • /
    • 2015
  • In recently, the demand of cover-glass is increased because smart phone, tablet pc, and electrical device has become widely used. The display of mobile device is enlarged, so it is necessary to have a high strength against the external force such as contact or falling. In fabrication process of cover-glass, a grinding process is very important process to obtain high strength of glass. Conventional grinding process using a grinding wheel is caused such as a scratch, chipping, notch, and micro-crack on a surface. In this paper, polishing system using a abrasive film was developed for a grinding of mobile cover-glass. To evaluate structural stability of the designed system, finite element model of the polishing system is generated, and multi-body dynamic analysis of abrasive film polishing machine is proposed. As a result of the analysis, stress and displacement analysis of abrasive film polishing system are performed, and using laser displacement sensor, structural stability of abrasive film polishing system is confirmed by measuring displacement.

Surface Morphology of PEO-treated Ti-6Al-4V Alloy after Anodic Titanium Oxide Treatment (ATO 처리후, 플라즈마 전해 산화 처리된 Ti-6Al-4V 합금의 표면 형태)

  • Kim, Seung-Pyo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.75-75
    • /
    • 2018
  • Commercially pure titanium (CP-Ti) and Ti-6Al-4V alloys have been widely used in implant materials such as dental and orthopedic implants due to their corrosion resistance, biocompatibility, and good mechanical properties. However, surface modification of titanium and titanium alloys is necessary to improve osseointegration between implant surface and bone. Especially, when titanium oxide nanotubes are formed on the surface of titanium alloy, cell adhesion is greatly improved. In addition, plasma electrolytic oxide (PEO) coatings have a good safety for osseointegration and can easily and quickly form coatings of uniform thickness with various pore sizes. Recently, the effects of bone element such as magnesium, zinc, strontium, silicon, and manganese for bone regeneration are researching in dental implant field. The purpose of this study was researched on the surface morphology of PEO-treated Ti-6Al-4V alloy after anodic titanium oxide treatmentusing various instruments. Ti-6Al-4V ELI disks were used as specimens for nanotube formation and PEO-treatment. The solution for the nanotube formation experiment was 1 M $H_3PO_4$ + 0.8 wt. % NaF electrolyte was used. The applied potential was 30V for 1 hours. The PEO treatment was performed after removing the nanotubes by ultrasonics for 10 minutes. The PEO treatment after removal of the nanotubes was carried out in the $Ca(CH_3)_2{\cdot}H_2O+(CH_3COO)_2Mg{\cdot}4H_2O+Mn(CH_3COO)_2{\cdot}4H_2O+Zn(CH_3CO_2)_2Zn{\cdot}2H_2O+Sr(CH_2COO)_2{\cdot}0.5H_2O+C_3H_7CaO_6P$ and $Na_2SiO_3{\cdot}9H_2O$ electrolytes. And the PEO-treatment time and potential were 3 minutes at 280V. The morphology changes of the coatings on Ti-6Al-4V alloy surface were observed using FE-SEM, EDS, XRD, AFM, and scratch tester. The morphology of PEO-treated surface in 5 ion coating solution after nanotube removal showed formation or nano-sized mesh and micro-sized pores.

  • PDF