DOI QR코드

DOI QR Code

Influence of Anodic Oxidation Film Formed on Titanium onto Cell Attachment and Proliferation

양극 산화에 의해 티타늄 표면에 형성된 산화 피막이 세포 부착 및 성장에 미치는 영향

  • Noh, Se-Ra (Dept. of Dental Materials and Dental Materials Research Institute, School of Dentistry, Chonnam National University) ;
  • Lee, Yong-Ryeol (Dept. of Dental Materials and Dental Materials Research Institute, School of Dentistry, Chonnam National University) ;
  • Song, Ho-Jun (Dept. of Dental Materials and Dental Materials Research Institute, School of Dentistry, Chonnam National University) ;
  • Park, Yeong-Joon (Dept. of Dental Materials and Dental Materials Research Institute, School of Dentistry, Chonnam National University)
  • 노세라 (전남대학교 치의학전문대학원 치과재료학교실 및 치과재료연구소) ;
  • 이용렬 (전남대학교 치의학전문대학원 치과재료학교실 및 치과재료연구소) ;
  • 송호준 (전남대학교 치의학전문대학원 치과재료학교실 및 치과재료연구소) ;
  • 박영준 (전남대학교 치의학전문대학원 치과재료학교실 및 치과재료연구소)
  • Published : 2006.10.27

Abstract

This study was purposed to evaluate the influence of anodically oxidized film on titanium (Ti) onto MG-63 osteoblast-like cell attachment and activity. Only scratch lines created by polishing were seen in ASR and ANO-1 groups. About $1.5{\mu}m$-thick homogeneous oxide film which has pores of about $0.5{\mu}m$ diameter were formed in ANO-12. The crystalline structure of the oxide films formed by anodization in phosphoric acid electrolyte was $TiP_2O_7$. The total protein amounts of ANO-1 and ANO-12 groups showed higher values of maximum protein amount than that of AS-R group. At 3 days of incubation, total protein amount showed higher value in ANO-2 when comparing to that of AS-R (p<0.05). Based on the results of ALPase activity test, the degree of MG-63 cell differentiation for initial mineralization matrix formation was similar. For all the test groups after 1 day of incubation, MG-63 cells grew healthily in mono-layer with dendritic extensions. After incubation for 3 days, the specimen surfaces were covered more densely by cells, and numerous micro filaments were extruding to the extracellular matrix.

Keywords

References

  1. Y. T. Sul, C. B. Johansson, S. Petronis, A. Krozer, Y. S. Jeong, A. Wennergerg and T. Albrektsson, Biomaterials, 23, 491-501 (2002) https://doi.org/10.1016/S0142-9612(01)00131-4
  2. M. Fini, A. Cigada, G. Rondelli, R. Chiesa, R. Giardino, G. Giavaresi, N. N. Aldini, P. Torricelli and B. Vicentini, Biomaterials, 20, 1587 (1999) https://doi.org/10.1016/S0142-9612(99)00060-5
  3. V. M. Frauchiger, F. Schlottig, B. Gasser and M. Textor, Biomaterials, 25, 593 (2004) https://doi.org/10.1016/S0142-9612(03)00560-X
  4. J. P. Schreckenbach, G. Marx, F. Schlottig, M. Textor and N. D. Spencer, J. Mater. Sci. Mater. Med., 10, 453 (1999) https://doi.org/10.1023/A:1008988706980
  5. L. Montanaro, C. R. Arciola, D. Campoccia and M. Cervellati, Biomaterials, 23, 3651 (2002) https://doi.org/10.1016/S0142-9612(02)00098-4
  6. R. Rodriguez, K. H. Kim and J. L. Org, J. Biomed. Mater. Res., 65A, 352 (2003) https://doi.org/10.1002/jbm.a.10490
  7. W. W. Son, X. Zhu, H. I. Shin, J. L. Ong and K. H. Kim, J. Biomed. Mater. Res. Part B: Appl. Biomater., 66B, 520 (2003) https://doi.org/10.1002/jbm.b.10042
  8. X. Zhu, J. L. Ong, S. Y. Kim and K. H. Kim, J. Biomed. Mater. Res., 60, 333 (2002) https://doi.org/10.1002/jbm.10105
  9. W. W. Son, K. H. Kim, H. I. Kim, T. Hanawa and Y. S. Jeong, Biomater. Res., 4, 66 (2000)
  10. T. Hanawa and M. Ota. Biomaterials, 12, 767 (1991) https://doi.org/10.1016/0142-9612(91)90028-9
  11. Y. T. Sul, C. B. Johnsson, Y. S. Jeong and T. Albrektsson, Medical Engineering & Physics, 23, 329 (2001) https://doi.org/10.1016/S1350-4533(01)00050-9
  12. M. Wiedmamm-Al-Ahmad, R. Gutwald, G. Lauer, U. H?bner and R. Schmelzeisen, Biomaterials, 23, 3319 (2002) https://doi.org/10.1016/S0142-9612(02)00019-4
  13. J. Y. Martin, Z. Schwartz, T. W. Hummert, D. M. Schraub, J. Lankford, J. D. Dean, D. L. Cochran and B. D. Boyan, J. Biomed. Mater. Res., 29, 389 (1995) https://doi.org/10.1002/jbm.820290314
  14. J. L. Ong, C. A. Hoppe, H. L. Cardenas, R. Cavin, D. L. Carnes, A. Sogal and G.N. Raikar, J. Biomed. Mater. Res., 39, 176 (1998) https://doi.org/10.1002/(SICI)1097-4636(199802)39:2<176::AID-JBM2>3.0.CO;2-M
  15. M. Amaral, M. A. Costa, M. A. Lopes, R. F. Silva, J. D. Santos and M. H. Fernandes, Biomaterials, 23, 4897 (2002) https://doi.org/10.1016/S0142-9612(02)00249-1
  16. P. Evridiki, K. Mirsini, V. B. Irenc. K. Christos and M. Evangelos, Biol. Cell, 94, 117 (2002) https://doi.org/10.1016/S0248-4900(02)01180-2
  17. W. J. Krizmanich and R. M. K. W. Lee, Exp. Mol. Pathol., 64, 157 (1997) https://doi.org/10.1006/exmp.1997.2217
  18. J. D. Clinton, Biological techniques for transmission and scanning electron microscopy, p.231, Ladd research industries, Florida, (1971)
  19. I. G. Joseph. E. N. Dale, E. Partick, C. J. David, J. A. D. Romig, E. L. Charles, F. Charles and L. Eric, Scanning electron microscopy and x-ray microanalysis, p.582, Plenum press, New York, (1992)
  20. A. Ten Cate, Oral histology, 4th ed., p.111, Mosby-year book, St. Louis, (1994)
  21. K. Okazaki, Ceramic engineering for dielectrics, p.171, Gakken-sha publishing Co., Tokyo, (1992)
  22. G. G. Reinholz. B. Getz, L. Pederson, E. S. Sanders, M. Subramaniam, J. N. Ingle and T. C. Spelsberg, Cancer Res., 60, 6001 (2000)
  23. J. Y. Suh, B. C. Jang, X. Zhu, J. L. Ong and K. H. Kim, Biomaterials, 24, 347 (2003) https://doi.org/10.1016/S0142-9612(02)00325-3
  24. C. Larsson, P. Thomsen, B. O. Aronsson, M. Rondahl, J. Lausmaa, B. Kasemo and L. E. Ericson, Biomaterials, 17, 605 (1996) https://doi.org/10.1016/0142-9612(96)88711-4
  25. L. F. Cooper, T. Masuda, S. W. Whitson, P. Yliheikkil and A. David, Int. J. Oral Maxillofac. Implants., 14, 37 (1999)