• 제목/요약/키워드: Micro-Cantilever

검색결과 135건 처리시간 0.032초

공진 기반 마이크로기계 생화학 센싱 구조물의 해석 (Analysis of Resonance Based Micromechanical Bio-Chemical Sensing Structures)

  • 여민구;신윤혁;임홍재;임시형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1767-1772
    • /
    • 2008
  • A microcantilever is a well-known MEMS structure for sensing bio-chemical molecules. When bio-chemical molecules are adsorbed on the microcantilever's surface, resonance frequency shift is generated. There are two issues in this phenomena. The first one is which one between mass change and surface stress change effects is more dominant on the resonance frequency shift. The second one is what will be the performance change when the boundary condition is changed from cantilevers to double clamped beams. We have studied the effect of surface stress change and compared it with that of mass change by using FEM analysis. Furthermore, for microstructures having different boundary conditions, we have studied Q-factor, which determines the detection limit of micro/nano mechanical sensors.

  • PDF

부가증착을 이용한 마이크로 구멍의 크기감소 (Size reduction of micro-aperture using additional deposition)

  • 이준석;김규만
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.505-506
    • /
    • 2006
  • Size reduction of micro-aperture using additional deposition is presented in this study. PECVD process was used for additional deposition. Rate of deposition is different with deposition direction because corners of shadowmask membrane have a taper. Deposition into backside showed better than deposition into frontside with size reduction. Shadowmask membrane with two materials has stress because of the difference of a coefficient of thermal expansion The cantilever of membrane bend to opposite direction of deposition. Deposition to both frontside and backside could reduce inside stress.

  • PDF

Wafer Pin Array Frame을 이용한 Probe Head Module (Make Probe Head Module use of Wafer Pin Array Frame)

  • 이재하
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 추계총회 및 학술대회 논문집
    • /
    • pp.71-71
    • /
    • 2012
  • Memory 반도체 Test공정에서 사용되는 Probe Card의 Probing Area가 넓어지면서 종래에 사용되던 Cantilever제품의 사용이 불가능하게 되고, MEMS공정을 사용한 새로운 형태의 Advanced제품이 시장에 출현을 하였다. MEMS형의 제품은 다수의 Micro Spring을 MLC(Multi Layer Ceramic)위에 MEMS 공정을 사용하여 생성하는 방식으로서 MLC는 좁은 지역에 다수의 Pin을 생성 할 수 있는 공간을 만들어 주며, 또 다른 이유는 전기적 특성인 임피던스를 맞추고 다수의 Pin의 압력에 의하여 생기는 하중을 Ceramic기판으로 지탱하기 위한 목적도 있다. 이에 MLC와 같은 전기적 특성을 임피던스를 맞춘 RF-CPCB를 사용하여 작은 면적에 다수의 Pin접합이 가능한 방법을 마련한 후, 이 RF-PCB를 부착하여 Pin의 하중을 받는 Wafer와 유사한 열팽창을 갖는 Substrate를 사용하여 MLC를 대체하여 다양한 온도 조건에서 사용이 가능하며, 복잡하고 공정비가 많이 드는 MEMS 공정에 의한 일괄 Micro Spring 생성 공정을 전주 도금 또는 2D방식의 도금 Pin으로 대체하였으며, Probe Card의 중요한 물리적 특성인 Pin들의 정렬도를 마련하기 위해 Photo Process를 사용한 Wafer로 만든 Wafer Pin Array Frame을 사용하여 2D 제작 Pin을 일괄 또는 부분 접합이 가능한 방법으로 Probe Array Head를 제작하여 이들을 부착하여 Probe Array Head를 이전의 MEMS공정 방법에 비해 쉽고 빠르게 만들어 probe Card를 제작 할 수 있게 되었다.

  • PDF

Optically Actuated Carbon Nanocoils

  • Wang, Peng;Pan, Lujun;Li, Chengwei;Zheng, Jia
    • Nano
    • /
    • 제13권10호
    • /
    • pp.1850112.1-1850112.6
    • /
    • 2018
  • Optical manipulation on microscale and nanoscale structures opens up new possibilities for assembly and control of microelectromechanical systems and nanoelectromechanical systems. Static optical force induces constant displacement while changing optical force stimulates vibration of a microcantilever/nanocantilever. The vibratory behavior of a single carbon nanocoil cantilever under optical actuation is investigated. A fitting formula to describe the laser-induced vibration characteristics is deduced based on a classical continuum model, by which the resonance frequency of the carbon nanocoil can be determined directly and accurately. This optically actuated vibration method could be widely used in stimulating quasi-1D micro/nanorod-like materials, and has potential applications in micro-/nano-opto-electromechanical systems.

서브 마이크로 구조를 가진 실리콘 표면의 마찰 특성 연구 (Study on Frictional Characteristics of Sub-micro Structured Silicon Surfaces)

  • 한지희;한규범;장동영;안효석
    • Tribology and Lubricants
    • /
    • 제33권3호
    • /
    • pp.92-97
    • /
    • 2017
  • The understanding of the friction characteristics of micro-textured surface is of great importance to enhance the tribological properties of nano- and micro-devices. We fabricate rectangular patterns with submicron-scale structures on a Si wafer surface with various pitches and heights by using a focused ion beam (FIB). In addition, we fabricate tilted rectangular patterns to identify the influence of the tilt angle ($45^{\circ}$ and $135^{\circ}$) on friction behaviour. We perform the friction test using lateral force microscopy (LFM) employing a colloidal probe. We fabricate the colloidal probe by attaching a $10{\pm}1-{\mu}m$-diameter borosilicate glass sphere to a tipless silicon cantilever by using a ultraviolet cure adhesive. The applied normal loads range between 200 nN and 1100 nN and the sliding speed was set to $12{\mu}m/s$. The test results show that the friction behavior varied depending on the pitch, height, and tilt angle of the microstructure. The friction forces were relatively lower for narrower and deeper pitches. The comparison of friction force between the sub-micro-structured surfaces and the original Si surface indicate an improvement of the friction property at a low load range. The current study provides a better understanding of the influence of pitch, height, and tilt angle of the microstructure on their tribological properties, enabling the design of sub-micro- and micro-structured Si surfaces to improve their mechanical durability.

Piezo-electrically Actuated Micro Corner Cube Retroreflector (CCR) for Free-space Optical Communication Applications

  • Lee, Duk-Hyun;Park, Jae-Y.
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권2호
    • /
    • pp.337-341
    • /
    • 2010
  • In this paper, an extremely low voltage operated micro corner cube retroreflector (CCR) was fabricated for free-space optical communication applications by using bulk silicon micromachining technologies. The CCR was comprised of an orthogonal vertical mirror and a horizontal actuated mirror. For low voltage operation, the horizontal actuated mirror was designed with two PZT cantilever actuators, torsional bars, hinges, and a mirror plate with a size of $400{\mu}m{\times}400{\mu}m$. In particular, the torsional bars and hinges were carefully simulated and designed to secure the flatness of the mirror plate by using a finite element method (FEM) simulator. The measured tilting angle was approximately $2^{\circ}$ at the applied voltage of 5 V. An orthogonal vertical mirror with an extremely smooth surface texture was fabricated using KOH wet etching and a double-SOI (silicon-on-insulator) wafer with a (110) silicon wafer. The fabricated orthogonal vertical mirror was comprised of four pairs of two mutually orthogonal flat mirrors with $400{\mu}m4 (length) $\times400{\mu}m$ (height) $\times30{\mu}m$ (thickness). The cross angles and surface roughness of the orthogonal vertical mirror were orthogonal, almost $90^{\circ}$ and 3.523 nm rms, respectively. The proposed CCR was completed by combining the orthogonal vertical and horizontal actuated mirrors. Data transmission and modulation at a frequency of 10 Hz was successfully demonstrated using the fabricated CCR at a distance of approximately 50 cm.

Annealing Effects of Laser Ablated PZT Films

  • Rhie, Dong-Hee;Jung, Jin-Hwee;Cho, Bong-Hee;Ryutaro Maeda
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.528-531
    • /
    • 2000
  • Deposition of PZT with UV laser ablatio was applied for realization of thin film sensors and actuators. Deposition rate of more than 20nm/min was attained by pulsed KrF excimer laser deposition, which is fairly better than those obtained by the other methods. Perovskite phase was obtained at room temperature deposition with Fast Atom Beam(FAB) treatment and annealing. Smart MEMS(Micro electro-mechanical system) is now a suject of interest in the field of micro optical devices, micro pumps, AFM cantilever devices etc. It can be fabricated by deposition of PZT thin films and micromachining. PZT films of more than 1 micron thickness is difficult to obtain by conventional methods. This is the reason why we applied excimer laser ablation for thin film deposition. The remanent polarization Pr of 700nm PZT thin film was measured, and the relative dielectric constant was determined to about 900 and the dielectric loss tangent was also measured to be about 0.04. XRD analysis shows that, after annealing at 650 degrees C in 1 hour, the perovskite structure would be formed with some amount of pyrochlore phase, as is the case of the annealing at 750 degrees C in 1 hour.

  • PDF

Effects of orthodontic force on root surface damage caused by contact with temporary anchorage devices and on the repair process

  • Guler, Ozge Celik;Malkoc, Siddik
    • 대한치과교정학회지
    • /
    • 제49권2호
    • /
    • pp.106-115
    • /
    • 2019
  • Objective: This study aimed to evaluate the effects of force loading on root damage caused by contact with temporary anchorage devices (TADs) during orthodontic treatment and to examine the repair process 4, 8, and 12 weeks after TAD contact by micro-computed tomography (CT). Methods: We enrolled 42 volunteers who required bilateral upper first premolar extractions. The experimental study design was as follows. For both first premolars, cantilever springs were placed, and then TADs were immediately inserted between the premolars of all volunteers. According to the removal order of the appliances, the participants were divided into the TAD group (Group T: n = 21, only TAD removal) and the spring group (Group S: n = 21, only spring removal). A splitmouth design was adopted in both groups as follows. For each volunteer, the left premolars were extracted 4, 8, or 12 weeks after TAD-root contact. The right premolars were extracted immediately after contact in both groups (Groups T-C and S-C) and used as positive controls. Resorption volumes and numbers of craters were determined by micro-CT. Results: The numbers of resorption craters were higher in Group T than in Group S at 8 and 12 weeks (p < 0.01). Crater volumes were higher in Group T than in Group S at 4 and 12 weeks (p < 0.01, both). Conclusions: Root injury was not completely repaired 12 weeks after root-TAD contact, even when the TADs were removed in cases of continuous force application.

TA-ESPI에 의한 외팔보의 탄성계수 측정 (Evaluation of Young's Modulus of a Cantilever Beam by TA-ESPI)

  • 이항서;김경석;강기수;정현철;양승필
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1115-1119
    • /
    • 2005
  • The paper proposes the elastic modulus evaluation technique of a cantilever beam by vibration analysis based on time-average electronic speckle pattern interferometry (TA-ESPI) with non-contact and nondestructive and Euler-Bernoulli equation. General approaches for the measurement of elastic modulus of thin film are Nano indentation test, Bulge test and Micro-tensile test and so on. They each have strength and weakness in the preparation of test specimen and the analysis of experimental result. ESPI has been developed as a common measurement method for vibration mode visualization and surface displacement. Whole-field vibration mode shape (surface displacement distribution) at a resonance frequency can be visualized by ESPI. And the maximum surface displacement distribution from ESPI is a clue to find the resonance frequency at each vibration mode shape. And the elastic modules of test material can be easily estimated from the measured resonance frequency and Euler-Bernoulli equation. The TA-ESPI vibration analysis technique is able to give the elastic modulus of materials through the simple processing of preparation and analysis.

  • PDF

PZT 후박을 적용한 piezo-cantilever 마이크로 발전 특성 (Micro power of piezo cantilever With PZT thick films)

  • 김인성;정순종;김민수;송재성;이대수;전소현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.296-297
    • /
    • 2007
  • PMN-PZT 단층 및 다층 후막을 알루미나 기판위에 켄티레버 형태로 제작하여, 외부의 미소 진동에 의한 마이크로 발전 특성을 고찰하였다. 미소 변위에 의한 마이크로 발전 특성은 켄티레버의 무게(load), 진동수, 켄티레버의 길이 등에 밀접한 영향을 미치므로 이에 준한 요소를 고려하여 여러 가지 변수로 실험하였다. 연구 결과 서로 다른 소재의 기판과 발전체의 계면 분리 현상, 전극과 발전체의 분리 현상, 소결 온도 등이 소재 측면의 문제점으로 크게 대두되었으며, $5{\times}20mm$ 기판위에 형성된 발전체의 특성은 $1.1k{\Omega}{\sim}1M{\Omega}$의 부하에 따른 전압변동이 0.01V에서 3.6V로 큰 차이가 났다. 켄티레버의 로드의 변화에 대한 피크 전압은 $1.9{\sim}{\pm}2.8V$로 조사되었으며, 출력은 $0.45{\sim}4{\mu}W$로 측정되었다. 그러나 이런 외부 조건 보다 압전체의 공진 특성과 진동수는 가장 중요한 요인으로 나타났으며, 몇몇 문제가 해결될 경우 마이크로 발전소자로의 활용 가능성이 있는 것으로 조사되었다.

  • PDF