• Title/Summary/Keyword: Micro technology

Search Result 4,636, Processing Time 0.033 seconds

Development of a Novel Micro-stereolithography Technology using UV Lamp and Optical Fiber (UV 램프와 광섬유를 이용한 새로운 개념의 마이크로 광 조형기술의 개발)

  • Choi, Ji-Soon;Lee, Seung-Pyo;Ko, Tae-Jo;Lee, In-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.12 s.189
    • /
    • pp.117-121
    • /
    • 2006
  • Generally, micro-stereolithography technology uses laser and complex optical system as light source and light delivery system, respectively. In this research, a novel micro-stereolithography technology that uses UV lamp that is more economical than UV laser as light source and optical fiber that is simpler than previous light delivery system has been developed. Furthermore, precise control system that is composed of 3-axis linear stage and shutter has been used to fabricate truly three dimensional micro-structure. For confirming the feasibility of developed micro-stereolithography apparatus, the solidification experiments were conducted. The solidification widths and depths datum of photopolymer as varying scanning speed of the UV light have been obtained. Using developed apparatus, some micro structures were fabricated successfully.

manufacturing micro CPL (Capillary Pumped Loop)by using LIGA process (LIGA process를 이용한 micro CPL(Capillary Pumped Loop)제작)

  • Cho, Jin-Woo;Jung, Suk-Won;Park, Joon-Shik;Park, Sun-Seob
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1881-1883
    • /
    • 2001
  • We manufactured a micro CPL by LlGA process, a new conceptual ultra-fine and precise forming method, using X-ray lithography process. We fabricated a BN X-ray mask having properties of good X-ray transmittance and large mechanical strength. Micro CPL was manufactured by dividing into an upper plate and a low plate. Each of plates was bonded by Ag paste screen printing. The upper plate was fabricated on glass wafer to observe flow and phase transformation of cooling solution. The lower plate was manufactured by Cu electroplating for good heat transmission. Precision of inner Parts, micro pin and micro channel, of manufactured micro CPL is under ${\pm}2{\mu}m$.

  • PDF

Implementation of a Piezoresistive MEMS Cantilever for Nanoscale Force Measurement in Micro/Nano Robotic Applications

  • Kim, Deok-Ho;Kim, Byungkyu;Park, Jong-Oh
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.789-797
    • /
    • 2004
  • The nanoscale sensing and manipulation have become a challenging issue in micro/nano-robotic applications. In particular, a feedback sensor-based manipulation is necessary for realizing an efficient and reliable handling of particles under uncertain environment in a micro/nano scale. This paper presents a piezoresistive MEMS cantilever for nanoscale force measurement in micro robotics. A piezoresistive MEMS cantilever enables sensing of gripping and contact forces in nanonewton resolution by measuring changes in the stress-induced electrical resistances. The calibration of a piezoresistive MEMS cantilever is experimentally carried out. In addition, as part of the work on nanomanipulation with a piezoresistive MEMS cantilever, the analysis on the interaction forces between a tip and a material, and the associated manipulation strategies are investigated. Experiments and simulations show that a piezoresistive MEMS cantilever integrated into a micro robotic system can be effectively used in nanoscale force measurements and a sensor-based manipulation.

A Study of Micro De-burring Characteristics using Polymer and $Al_2O_3$ Abrasive (폴리머와 산화알루미나 연마재를 이용한 마이크로 버 제거 특성에 관한 연구)

  • Sohn, Jong-In;Lee, Jeong-Won;Kim, Jun-Ki;Yoon, Gil-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.578-584
    • /
    • 2011
  • In mechanical cutting process, burr was generated at workpiece by cutting tool generally. It is working disturbance during manufacturing process. Besides burr was taken shape relatively large size more micro scale machining than macro scale machining. Many researches have been studied to remove micro burr(de-burring), because it was negative effect for accuracy of machining shape. However, micro de-burring was constrained by burr height, micro feature and so on. In this paper, experimental research was carried out to compare de-burring characteristics of $Al_2O_3$ abrasive and polymer.

Manufacturing of Micro-needle Using Micro-EDM Process (마이크로 EDM공정을 이용한 마이크로 바늘의 제조)

  • Lee, Choon-Mee;Kwon, Won Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.3
    • /
    • pp.285-291
    • /
    • 2017
  • Micro-needles are used as transferring devices for sampling of tiny constitute substances from biological bodies. Typically, nickel is used as a coating to improve the rigidity of micro-needles. This study introduces the methodology to manufacture a WC needle with very high hardness and toughness. Micro-EDM technology was used to manufacture micro-needles with holes $130{\mu}m$ in diameter and $2300{\mu}m$ in length. A micro-needle was aligned to the micro-EDM electrode using a custom two degree-of-freedom alignment system. A three-step manufacturing technique was developed to drill a micro-hole using a WC electrode. In the first process, an electrode $105{\mu}m$ in diameter was used to make a hole. Electrodes of 90 and $105{\mu}m$ diameters were used in the second and third process, respectively. Consequently, a WC micro-needle with an inner hole of $135{\mu}m$ diameter, length of $2300{\mu}m$, and outer diameter of $300{\mu}m$ was developed.

Manufacturing technology of micro parts by powder injection molding (PIM기술을 이용한 마이크로 부품 성형기술)

  • Lee, W.S.;Ko, S.H.;Jang, J.M.;Kim, I.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.60-63
    • /
    • 2009
  • Manufacturing technologies of micro spur gear and micro mold by micro PIM were studied with stainless steel feedstock. For molding of gears, micro mold with gear cavity of 1.2 mm in diameter was produced by wire EDM. The proper injection pressure was selected to 70bar by observation and measuring of shapes and shrinkage of gears before/after sintering. For fabrication of micro mold, a tiny polymer gear was produced by injection into the mold. Then, 316L feedstock was again injected/compressed on the polymer gear and debinded together with polymer gear followed by sintering. As a result, another metal mold with gear cavity reduced to about 20% was fabricated and through repetition of this process chain, micro gear mold with cavity about below 800 um was finally obtained. In reduction of size by injection/compression molding, height of gear tooth was shrunk more and the effort for decrease of roughness of micro cavity were carried out ultrasonic polishing and as a result, the roughness in cavity decreased from 3-4 um to about 200 nm.

  • PDF

A Study on the Mechanical Micro Machining System set-up and Applications (기계적 미세 가공 시스템 구성 및 응용 연구)

  • 제태진;이응숙;최두선;이선우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.934-937
    • /
    • 2001
  • It is well-known that the micro fabrication technology of micro parts are the high energy beam or silicon-based micro machining method such as LIGA Process, Laser machining, photolithography and etching technology. But, for fabricating complex 3-D structure it is better to use mechanical machining. This machining method by the mechanical machine tool with nanometer accuracy is getting attention in some field-especially micro optics machining such as grating, holographic lens, micro lens array, fresnel lens, encoder disk etc.. In this study, we survey the micro fabrication by mechanical cutting method and set up the mechanical micro machining system. And we carried out micro cutting experiments for micro parts with v-shape groove.

  • PDF

Study on Micro Machining for Micro Shafts using micro endmill (미세 엔드밀에 의한 마이크로 샤프트 가공기술 연구)

  • Je, T.J.;Lee, E.S.;Lee, J.C.;Choi, H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.181-184
    • /
    • 2002
  • In these day, fabrication technologies for micro parts become more important with the increase of interest on microsystem and developed through the various approaches in the whole world. Among these technologies; micro mechanical machining is one of the most effective methods for the fabrication of micro parts. In this study, we fabricated micro shafts using micro endmill and micromachining system and measured the cutting force at the process. Also, Based on the data, we simulated the deformation of micro shafts due to the cutting force. Through the simulation results, it was verified that the cutting force at the process is enough to cause dimensional error at the micro shafts.

  • PDF

Fabrication of the Liquid Analyzer us ing Micro-stereolithography Technology (Micro-stereolithography 기술을 이용한 용액분석 소자 제작)

  • 이영태
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.12
    • /
    • pp.994-1000
    • /
    • 2001
  • In this paper, using micro-stereolithography technology, I fabricated a liquid analyzer to measure ion concentration of a solution. Micro-stereolithography is a technology to fabricate 3-dimensional structure by applying laser beam on liquid photo-polymer. This technology makes it possible to do preassemble fabrication without any extra assembling step after the process. So, the liquid analyzer could be fabricated at very low cost with very simple process by micro-stereolithography technology. The liquid analyzer consists of a chamber for containing the solution, a pump using piezoelectric effect of PZT disk, a static mixer and a sensor for measuring ion concentration using Pt electrodes.

  • PDF

Core Technology Development for Micro Machining Process on Large Surface (대면적 미세 가공공정 원천기술 개발)

  • Lee, Seok-Woo;Lee, Dong-Yoon;Song, Ki-Hyeong;Kang, Ho-Chul;Kim, Su-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.769-776
    • /
    • 2011
  • In order to cope with the requirements of smaller patterns, larger surfaces and lower costs in the fields of displays, optics and energy, greater attentions is now being paid to the development of micro-pattern machining technology. Compared with flat molds, roll molds have the advantages of short delivery, ease of manufacturing larger surfaces, and continuous molding. This paper presents the state-of-the-art of the micro pattern machining technology on the roll molds and introduces some research results on the machining process technology. The copper and nickel-phosphorous-alloy plating process, machining process technology for uniform micro patterns. micro cutting simulation and the real time monitoring system for micro machining are summarized. The developed technologies have led the complete localization of the prism sheets and will be applied to the direct forming process with succeeding research & development.