• Title/Summary/Keyword: Micro satellites

Search Result 70, Processing Time 0.025 seconds

Analytical & Experimental Study on Microvibration Effects of Satellite (인공위성의 미소 진동 영향성에 관한 해석 및 실험적 연구)

  • Park, Geeyong;Lee, Dae-Oen;Yoon, Jae-San;Han, Jae-Hung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.533-539
    • /
    • 2013
  • Number of components and payload systems installed in satellites were found to be exposed to various disturbance sources such as the reaction wheel assembly, the control moment gyro, coolers, and others. A micro-level of vibration can introduce jitter problems into an optical payload system and cause significant degradation of the image quality. Moreover, the prediction of on-orbit vibration effects on the performance of optical payloads during the development process is always important. However, analyzing interactions between subsystems and predicting the vibration level of the payloads is extremely difficult. Therefore, this paper describes the analytical and experimental approach to microvibration effects on satellite optical payload performance with integrated jitter analysis framework, micro vibration emulator and satellite structure testbed.

  • PDF

Design of Micro-Satellite Constellation for Reconnaissance of Korean Peninsula (한반도 감시·정찰을 위한 초소형 위성군 설계)

  • Shin, Jinyoung;Hwang, Youngmin;Park, Sang-Young;Jeon, Soobin;Lee, Eunji;Song, Sung-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.6
    • /
    • pp.401-412
    • /
    • 2022
  • In this study, we investigated the design methods of satellite constellations to conduct near-real-time surveillance reconnaissance of the Korean Peninsula. Also, we designed satellite constellations utilizing the Walker-Delta method and repeat-ground-track method, and taking into account the target area and the feasible number of satellites. The constrains of the Electro-Optical and Synthetic Aperture Radar equipment were also considered in performance analysis. As a result, the designed constellation has mean revisit time of less than 30 min which enables near-real-time surveillance reconnaissance of the Korean Peninsula. This research provides the strategy to design the satellite constellation for reconnaissance. Furthermore, it contributes to suggesting an operating strategy for micro-satellites constellation and guidelines for establishing space force.

A Study on Work Development Direction of Cost Analysis through Cost Analysis of Micro Satellite (초소형위성 비용분석 사례연구를 통한 비용분석 업무발전 방향에 대한 고찰)

  • Lee, Tae Hwa
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.3
    • /
    • pp.461-479
    • /
    • 2023
  • Purpose: It emphasizes the importance of cost analysis for weapons systems that require enormous develop- ment costs, analyzes the problems of cost analysis steps from a practical point of view, and presents the direction of business development in terms of cost analysis reliability, timeliness, and efficiency. Methods: It analyzes the R&D cost of Micro satellites with a complex cost structure and large scale according to engineering estimation procedures, derives major analysis step-by-step problems, and presents business development directions. Results: Problems with standards and assumptions, data collection, cost division structure, and cost estimation methods were derived through the micro satellite cost analysis process, and business development directions such as expanding common standards, standardizing basic data, standardizing cost division structures and cost items, and data asset were presented. Conclusion: In order to develop work in terms of cost analysis reliability, timeliness, and efficiency, it is important to prepare and standardize standards and rules for detailed tasks at each analysis stage, and through this, it is expected that high utilization value and systematic cost data will be assetized in the future.

DIGITAL SIGNAL PROCESSING EXPERIMENT OF KITSAT-1 AND KITSAT-2 (우리별 1, 2호의 디지털 신호처리부(DSPE) 실험의 고찰)

  • 박강민;김형명;최순달
    • Journal of Astronomy and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.163-172
    • /
    • 1996
  • The objective of this paper is to show how digital signal processing experiment(DSPE) was designed and to present its experimental results in orbit and on the ground. The multi-missional and flexible DSPE was designed in a reliable manner. Among several experiments executed in orbit and on the ground, a high-speed(19.2kbps) software modulator experiment was discussed in this paper. A 32bit floating-type TMS320C30, which was developed for commercial purposes, was used on LEO micro-satellites, KITSAT-1 and KITSAT-2. This digital signal processor(DSP) can be applied to the various payloads of the next generation satellites.

  • PDF

KOMPSAT Image Processing and Application (다목적실용위성 영상처리 및 활용)

  • Lee, Kwang-Jae;Kim, Ye-Seul;Chae, Sung-Ho;Oh, Kwan-Young;Lee, Sun-Gu
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1871-1877
    • /
    • 2022
  • In the past, satellite development required enormous budget and time, so only some developed countries possessed satellites. However, with the recent emergence of low-budget satellites such as micro-satellites, many countries around the world are participating in satellite development. Low-orbit and geostationary-orbit satellites are used in various fields such as environment and weather monitoring, precise change detection, and disasters. Recently, it has been actively used for monitoring through deep learning-based object-of-interest detection. Until now, Korea has developed satellites for national demand according to the space development plan, and the satellite image obtained through this is used for various purpose in the public and private sectors. Interest in satellite image is continuously increasing in Korea, and various contests are being held to discover ideas for satellite image application and promote technology development. In this special issue, we would like to introduce the topics that participated in the recently held 2022 Satellite Information Application Contest and research on the processing and utilization of KOMPSAT image data.

Liquid phase hydrogen peroxide decomposition for micro-propulsion applications

  • McDevitt, M. Ryan;Hitt, Darren L.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.1
    • /
    • pp.21-35
    • /
    • 2017
  • Hydrogen peroxide is being considered as a monopropellant in micropropulsion systems for the next generation of miniaturized satellites ('nanosats') due to its high energy density, modest specific impulse and green characteristics. Efforts at the University of Vermont have focused on the development of a MEMS-based microthruster that uses a novel slug flow monopropellant injection scheme to generate thrust and impulse-bits commensurate with the intended micropropulsion application. The present study is a computational effort to investigate the initial decomposition of the monopropellant as it enters the catalytic chamber, and to compare the impact of the monopropellant injection scheme on decomposition performance. Two-dimensional numerical studies of the monopropellant in microchannel geometries have been developed and used to characterize the performance of the monopropellant before vaporization occurs. The results of these studies show that monopropellant in the lamellar flow regime, which lacks a non-diffusive mixing mechanism, does not decompose at a rate that is suitable for the microthruster dimensions. In contrast, monopropellant in the slug flow regime decomposes 57% faster than lamellar flow for a given length, indicating that the monopropellant injection scheme has potential benefits for the performance of the microthruster.

L.E.O. Satellite Power Subsystem Reliability Analysis

  • Zahran M.;Tawfik S.;Dyakov Gennady
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.104-113
    • /
    • 2006
  • Satellites have provided the impetus for the orderly development of reliability engineering research and analysis because they tend to have complex systems and hence acute problems. They were instrumental in developing mathematical models for reliability, as well as design techniques to permit quantitative specification, prediction and measurement of reliability. Reliability engineering is based on implementing measures which insure an item will perform its mission successfully. The discipline of reliability engineering consists of two fundamental aspects; $(1^{st})$ paying attention to details, and $(2^{nd})$ handling uncertainties. This paper uses some of the basic concepts, formulas and examples of reliability theory in application. This paper emphasizes the practical reliability analysis of a Low Earth Orbit (LEO) Micro-satellite power subsystem. Approaches for specifying and allocating the reliability of each element of the power system so as to meet the overall power system reliability requirements, as well as to give detailed modeling and predicting of equipment/system reliability are introduced. The results are handled and analyzed to form the final reliability results for the satellite power system. The results show that the Electric Power Subsystem (EPS) reliability meets the requirements with quad microcontrollers (MC), two boards working as main and cold redundant while each board contains two MCs in a hot redundant.

Conceptual Design of 6U Micro-Satellite System for Optical Images of 3 m GSD (3 m급 광학영상 촬영을 위한 6U 초소형위성 시스템 개념설계)

  • Kim, Geuk-Nam;Park, Sang-Young;Kim, Gi-hwan;Park, Seung-Han;Song, Youngbum;Song, Sung Chan
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.105-114
    • /
    • 2022
  • The purpose of this study was to present a conceptual design of the 6U micro-satellite system for optical image of 3 m GSD. An optical camera system with a payload of 3 m GSD image was designed and optimized. The optical system has a diameter of Ø78 mm, length 250 mm, and 1400 mm focal length. The requirement and constraints were configured for the 6U micro-satellite bus system with the payload. Satisfying the requirement and constraints, the subsystems of the 6U bus were designed such as attitude and orbit control, propulsion, command and data handling, electrical power, communication, structures and mechanisms, and thermal control subsystem. The mass budget, power budget, and communication link budget were also confirmed for the 6U micro-satellite comprising the optical payload and the subsystems of bus. To take optical images, a mission operation concept is proposed for the 6U micro-satellite in a low-Earth orbit. A constellation comprising many 6U micro-satellites studied in this paper, can provide with various data for reconnaissance and disaster tracking.

TinyML Gamma Radiation Classifier

  • Moez Altayeb;Marco Zennaro;Ermanno Pietrosemoli
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.443-451
    • /
    • 2023
  • Machine Learning has introduced many solutions in data science, but its application in IoT faces significant challenges, due to the limitations in memory size and processing capability of constrained devices. In this paper we design an automatic gamma radiation detection and identification embedded system that exploits the power of TinyML in a SiPM micro radiation sensor leveraging the Edge Impulse platform. The model is trained using real gamma source data enhanced by software augmentation algorithms. Tests show high accuracy in real time processing. This design has promising applications in general-purpose radiation detection and identification, nuclear safety, medical diagnosis and it is also amenable for deployment in small satellites.

Development of Active Micro-Vibration Isolator using Electromagnet (전자석을 사용한 능동 미소진동 절연장치 개발)

  • Lee, Dae-Oen;Park, Gee-Yong;Han, Jae-Hung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.390-394
    • /
    • 2013
  • Observation satellites carrying high precision optical payload require extremely stringent pointing stability that may be violated in the presence of the disturbances corning from reaction wheels, cryocoolers or other actuating components onboard the satellite. The most common method to protect the sensitive payloads from external disturbances is implementation of vibration isolator. In this paper development of a single axis active vibration isolator using electromagnet and its performance in isolating micro-vibration is presented. The main components of the developed isolator are membrane structure providing the isolator with the required stiffness and an electromagnet for active control. The performance test results show that additional damping can be achieved by active control without degrading isolation performance in high frequency region and that the developed isolator can effectively isolate micro-vibration.

  • PDF