• Title/Summary/Keyword: Micro polishing

Search Result 182, Processing Time 0.027 seconds

A Study of Micro-defect on chemical Mechanical Polishing(CMP) Process in VLST Circuit (고집적화 반도체 소자의 CMP 공정에서 Micro-Defect 관한 연굴)

  • Kim, Sang-Yong;Lee, Kyeng-Tae;Seo, Yong-Jin;Lee, Woo-Sun;Chung, Hun-Sang;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1891-1894
    • /
    • 1999
  • We can classify the scratches after CMP process into micro-scratch and macro-scratches according to the scratch size, scratch intensity and defect map, etc. The micro-scratches on wafer after CMP process are discussed in this paper. From many causes, major factor that influences the formation of micro-scratch is known as particle size distribution of slurry.(1) It is indefinite what size or type of particle can cause micro-scratch on wafer surface, but there is possibility caused by large particle over 1um. The best way for controlling these large particle to inflow is to use the slurry filter on POU(Point of user). But the slurry filter(especially, depth-type filter) has sometimes the problem which makes more sever micro-scratches on wafer surface after CMP. We studied that depth-type slurry filter has what kind of week-points and the number of scratch could be reduced by lowering slurry flow rate and by using high spray bar which sprays DIW on polishing pad with high pressure.

  • PDF

Analysis of residual stress of Nitinol by surface Polishing Method (표면 연마 방법에 따른 니티놀 잔류응력 분석)

  • Jeong, Ji-Seon;Hong, Kwang-Pyo;Kim, Woon-yong;Cho, Myeong-Woo
    • Design & Manufacturing
    • /
    • v.11 no.2
    • /
    • pp.51-56
    • /
    • 2017
  • Nitinol, a shape memory alloy (SMA), is manufactured from titanium and nickel and it used in various fields such as electrical applications, micro sensors. It is also recommended as a material in medical for implant because it has excellent organic compatibility. Nitinol is intended to be inserted into the human body, products require a high-quality surface and low residual stress. To overcome this problems, explore electrolyte polishing (EP) is being explored that may be appropriate for use with nitinol. EP is a particularly useful machining method because, as a non contact machining method, it produces neither machining heat nor internal stress in the machined materials. Sandpaper polishing is also useful machining method because, as a contact machining method, it can easily good surface roughness in the machined materials. The electrolyte polishing (EP) process has an effect of improving the surface roughness as well as the film polishing process, but has a characteristic that the residual stress is hardly generated because the work hardened layer is not formed on the processed surface. The sandpaper polishing process has the effect of improving the surface roughness but the residual stress remains in the surface. We experimented with three conditions of polishing process. First condition is the conventional polishing. Second condition is the electrochemical polishing(EP). And Last condition is a mixing process with the conventional polishing and the EP. Surface roughness and residual stress of the nitinol before a polishing process were $0.474{\mu}mRa$, -45.38MPa. Surface roughness and residual stress of the nitinol after mixing process of the conventional polishing and the EP were $1.071{\mu}mRa$, -143.157MPa. Surface roughness and residual stress of the nitinol after conventional polishing were $0.385{\mu}mRa$ and -205.15MPa. Surface roughness and residual stress of sandpaper and EP nitinol were $1.071{\mu}mRa$, -143.157MPa. The result shows that the EP process is a residual stress free process that eliminates the residual stress on the surface while eliminating the deformed layer remaining on the surface through composite surface machining rather than single surface machining. The EP process can be used for biomaterials such as nitinol and be applied to polishing of wafers and various fields.

Improvement of Defect Density by Slurry Fitter Installation in the CMP Process (CMP 공정에서 슬러리 필터설치에 따른 결함 밀도 개선)

  • Kim, Chul-Bok;Seo, Yong-Jin;Seo, Sang-Yong;Lee, Woo-Sun;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05b
    • /
    • pp.30-33
    • /
    • 2001
  • Chemical mechanical polishing(CMP) process has been widely used to planarize dielectrics, which can apply to employed in integrated circuits for sub-micron technology. Despite the increased use of CMP process, it is difficult to accomplish the global planarization of free-defects in inter-level dielectrics (ILD). Especially, defects like micro-scratch lead to severe circuit failure, and affects yield. CMP slurries can contain particles exceeding $1{\mu}m$ size, which could cause micro-scratch on the wafer surface. The large particles in these slurries may be caused by particle agglomeration in slurry supply line. To reduce these defects, slurry filtration method has been recommended in oxide CMP. In this work, we have studied the effects of filtration and the defect trend as a function of polished wafer count using various filters in inter-metal dielectric(IMD)-CMP. The filter installation in CMP polisher could reduce defect after IMD-CMP. As a result of micro-scratches formation, it shows that slurry filter plays an important role in determining consumable pad lifetime.

  • PDF

A Study on Improvement of Slurry Filter Efficiency in the CMP Process (CMP 공정에서 슬러리 필터의 효율 개선에 관한 연구)

  • Park, Sung-Woo;Seo, Yong-Jin;Seo, Sang-Yong;Lee, Woo-Sun;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05b
    • /
    • pp.34-37
    • /
    • 2001
  • As the integrated circuit device shrinks to smaller dimensions, chemical mechanical polishing (CMP) process was required for the global planarization of inter-metal dielectric (IMD) layer with free-defect. However, as the inter-metal dielectrics (IMD) layer gets thinner, micro-scratches are becoming as major defects. Micro-scratches are generated by agglomerated slurry, solidified and attached slurry in pipe line of slurry supply system. To prevent agglomerated slurry particle from inflow, we installed 0.5${\mu}m$ POU (point of use) filter, which is depth-type filter and has 80% filtering efficiency for the $1.0{\mu}m$ size particle. In this paper, we studied the relationship between defect generation and pad count to understand the exact efficiency of the slurry filtration, and to find out the appropriate pad usage. Our preliminary results showed that it is impossible to prevent defect-causing particles perfectly through the depth-type filter. Thus, we suggest that it is necessary to optimize the flow rate of slurry to overcome depth type filters weak-point, and to install the high spray of de-ionized Water (DIW) with high pressure.

  • PDF

Aging effect of annealed oxide CMP slurry (열처리된 산화막 CMP 슬러리의 노화 현상)

  • Lee, Woo-Sun;Shin, Jae-Wook;Choi, Kwon-Woo;Ko, Pil-Ju;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.335-338
    • /
    • 2003
  • Chemical mechanical polishing (CMP) process has been widely used to planarize dielectric layers, which can be applied to the integrated circuits for sub-micron technology. Despite the increased use of CMP process, it is difficult to accomplish the global planarization of in the defect-free inter-layer dielectrics (ILD). Especially, defects such as micro-scratch lead to severe circuit failure which affect yield. CMP slurries can contain particles exceeding $1\;{\mu}m$ in size, which could cause micro-scratch on the wafer surface. In this paper, we have studied aging effect the of CMP sin as a function of particle size. We prepared and compared the self-developed silica slurry by adding of abrasives before and after annealing. As our preliminary experiment results, we could be obtained the relatively stable slurry characteristics comparable to original silica slurry in the slurry aging effect.

  • PDF

Aging Effect on CMP slurry (CMP 실리카 슬러리 입도분석특성)

  • Lee, Woo-Sun;Ko, Pil-Ju;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.12-14
    • /
    • 2003
  • As the integrated circuit device shrinks to the smaller dimension, the chemical mechanical polishing (CMP). process was required for the global planarization of inter-metal dielectric (IMD) layer with free-defect. However, as the IMD layer gets thinner, micro-scratches are becoming as major defects. Micro-scratches are generated by agglomerated slurry, solidified and attached slurry in pipe line of slurry supply system. It is well known that the presence of hard and larger size particles in the CMP slurries increases the defect density and surface roughness of the polished wafers. In this paper, we have studied. aging effect the of CMP slurry as a function of particle size. We prepared and compared the self-developed silica slurry by adding of abrasives before and after annealing. As our preliminary experiment results, we could be obtained the relatively stable slurry characteristics comparable to original silica slurry in the slurry aging effect.

  • PDF

CMP slurry aging effect by Particle Size analysis (입도 분석을 통한 CMP 슬러리 에이징 효과)

  • Shin, Jae-Wook;Lee, Woo-Sun;Choi, Kwon-Woo;Ko, Pil-Ju;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.37-40
    • /
    • 2003
  • As the integrated circuit device shrinks to the smaller dimension, the chemical mechanical polishing (CMP) process was required for the global planarization of inter-metal dielectric (IMD) layer with free-defect. However, as the IMD layer gets thinner, micro-scratches are becoming as major defects. Micro-scratches are generated by agglomerated slurry, solidified and attached slurry in pipe line of slurry supply system. It is well known that the presence of hard and larger size particles in the CMP slurries increases the defect density and surface roughness of the polished wafers. In this paper, we have studied aging effect the of CMP slurry as a function of particle size. We prepared and compared the self-developed silica slurry by adding of abrasives before and after annealing. As our preliminary experiment results, we could be obtained the relatively stable slurry characteristics comparable to original silica slurry in the slurry aging effect.

  • PDF

A Study on the Micro-fracture Behavior of the MEMS Material at Elevated Temperature (고온용 MEMS 재료의 마이크로 파괴거동에 관한 연구)

  • Woo, Byung-Hoon;Bae, Chang-Won;Moon, Kyong-Man;Bae, Sung-Yeol;Higo, Yakichi;Kim, Yun-Hae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.550-555
    • /
    • 2007
  • The effective fracture toughness testing of materials intended for application in Micro Electro Mechanical Systems (MEMS) devices is required in order to improve understanding of how micro sized material used in device may be expected to perform upon the micro scale. ${\gamma}$-TiAl based materials are being considered for application in MEMS devices at elevated temperatures. Especially, in Alloy 4, both ${\alpha}_2$ and ${\gamma}$ lamellae were altered markedly in 3,000 h, $700^{\circ}C$ exposure. Parallel decomposition of coarse ${\alpha}_2$ into bunches of very fine (${\alpha}_2+{\gamma}$) lamellae. Parallel decomposition of coarse ${\alpha}_2$ into bunches of very fine (${\alpha}_2+{\gamma}$) lamellae. The materials were examined 2 types Alloy 4 on heat exposed specimen($700^{\circ}C$, 3,000 h) and no heat exposed one. Micro sized cantilever beams were prepared mechanical polishing on both side at $25{\sim}30{\mu}m$ and electro final stage polishing to observe lamellar orientation of same colony with EBSD (Electron Backscatter Diffraction Pattern). Through lamellar orientation as inter-lamellae or trans-lamellae, Cantilever beam was fabricated with Focused Ion Beam(FIB). The directional behavior of the lamellar structure was important property in single material, because of the effects of the different processing method and variations in properties according to lamellar orientation. In MEMS application, it is first necessary to have a reliable understanding of the manufacturing methods to be used to produce micro structure.

A Study on Micro Hole Punching with Soft Die Plate (소프트 다이 플레이트를 이용한 미세 구멍 펀칭 연구)

  • Yoo J. H.;Joo B. Y.;Jeon B. H.;Oh S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.260-265
    • /
    • 2002
  • In micro hole punching process, it is very difficult to align punch with die hole. Misalignment can cause a falling-on in hole quality and breakage of punch and die. Micro punching using soft die plate without a die hole has a big advantage because it is not necessary to align punch with die hole and to consider die clearance. Soft die plates are made by polymers or hard rubbers which are softer than metals. In this study, several micro punching experiments are conducted. Micro punching test with some materials shows that micro hole punching is feasible with some soft die plates. Through the section shape obtained by mounting and polishing, the punched hole quality is measured and the shapes of burr and dome we studied.

  • PDF

Development of fundamental technologies on high precision mold for micro functional elements and parts (기능성 초정밀 핵심 요소부품 제조 초정밀 금형 기반기술 개발)

  • Je, T.J.;Lee, E.S.;Choi, D.S.;Kim, J.G.;Whang, K.H.;Yoon, J.S.;Chang, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.74-77
    • /
    • 2009
  • Demands for high quality and productivity of precision mechanical parts are increasing greatly nowadays due to the rapid growth of information technologies and convergence industries. Therefore, core technologies for fabrication of precision mechanical parts are the fundamental issues, which are the precision machining, micro powder injection molding technologies, MR polishing, micro polymer processes, micro actuation modules and so on. These technologies are directly related to the mass production of high functional devices and machineries. Therefore, this study investigates the fabrication technologies of micro precision molds for advanced devices for possible commercialization in a near future.

  • PDF