• 제목/요약/키워드: Micro plastic

검색결과 376건 처리시간 0.025초

균일 냉각을 고려한 Thick-Wall 형상의 플라스틱 렌즈 쾌속 금형 제작 (Manufacturing of Rapid Tooling for Thick-Wall Plastic Lens Mold with Conformal Cooling Channel)

  • 박형필;차백순;이상용;최재혁;이병옥
    • Design & Manufacturing
    • /
    • 제1권1호
    • /
    • pp.27-32
    • /
    • 2007
  • In the optical application demand for high quality lens is increasing. Plastics lenses are demanded more than glass lenses for large size lenses as well as micro-size lenses. It is difficult to apply typical straight cooling channels of injection mold to lens molding due to its non-uniform temperature distribution. In this study, we manufactured molds for plastic lenses with the conventional cooling channels and conformal cooling channels produced by the DMLS process. We evaluated cooling performance for the 2 molds by injection molding experiment. Also, uniformity of the temperature distribution was tested by infrared camera and temperature monitoring. We confirmed that the cooling performance and temperature uniformity with the conformal cooling channels is much improved from the ones with the conventional. The cooling time with the conformal cooling channels was reduced 30% compared with the conventional cooling channels.

  • PDF

시일과 스틸면 사이의 구형 마멸입자에 의한 접촉해석 (Contact Analysis between Rubber Seal, a Spherical Wear Particle and Steel Surface)

  • 박태조;유재찬;조현동
    • Tribology and Lubricants
    • /
    • 제24권6호
    • /
    • pp.297-301
    • /
    • 2008
  • In many dynamic seals such as lip seal and compression packings, it is well known that wear occur at the surface of heat treated steel shaft as results of the intervened wear particle. It is widely understood that the dominant wear mechanism related in sealing surfaces is abrasive wear. However, little analytical and experimental studies about this problems have been done until now. In this paper, a contact analysis is carried out using MARC to investigate the wear mechanism in contact seal applications considering elastomeric seal, a elastic perfect-plastic micro-spherical particle and steel surface. Deformed seal shapes, contact and von-Mises stress distributions for various particle sizes and interference are showed. The maximum von-Mises stress within steel shaft was exceeded its yield strength and plastic deformation occurred at steel surface. Therefore, the sealing surface can be also worn by sub-surface fatigue due to wear particles together with well known abrasion. The numerical methods and models used in this paper can be applied in design of dynamic sealing systems, and further intensive studies are required.

Three-dimensional bio-printing and bone tissue engineering: technical innovations and potential applications in maxillofacial reconstructive surgery

  • Salah, Muhja;Tayebi, Lobat;Moharamzadeh, Keyvan;Naini, Farhad B.
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제42권
    • /
    • pp.18.1-18.9
    • /
    • 2020
  • Background: Bone grafting has been considered the gold standard for hard tissue reconstructive surgery and is widely used for large mandibular defect reconstruction. However, the midface encompasses delicate structures that are surrounded by a complex bone architecture, which makes bone grafting using traditional methods very challenging. Three-dimensional (3D) bioprinting is a developing technology that is derived from the evolution of additive manufacturing. It enables precise development of a scaffold from different available biomaterials that mimic the shape, size, and dimension of a defect without relying only on the surgeon's skills and capabilities, and subsequently, may enhance surgical outcomes and, in turn, patient satisfaction and quality of life. Review: This review summarizes different biomaterial classes that can be used in 3D bioprinters as bioinks to fabricate bone scaffolds, including polymers, bioceramics, and composites. It also describes the advantages and limitations of the three currently used 3D bioprinting technologies: inkjet bioprinting, micro-extrusion, and laserassisted bioprinting. Conclusions: Although 3D bioprinting technology is still in its infancy and requires further development and optimization both in biomaterials and techniques, it offers great promise and potential for facial reconstruction with improved outcome.

SDGs시대의 폐기물관리 : EU의 플라스틱 전략 (Waste Management in the Era of Sustainable Development Goals : The EU's Plastics Strategy)

  • 박상우
    • 한국폐기물자원순환학회지
    • /
    • 제35권8호
    • /
    • pp.683-691
    • /
    • 2018
  • The plastic strategy adopted by the EU in January 2018 was established to implement circular economic policies and the Sustainable Development Goals(SDGs) of the United Nations. The strategy includes the vision and implementation measures to achieve, which are primarily measures to improve recycling and increase demand for recycled plastics. The representative measures include the design that considers recycling possibilities, reinforcement of demand for recycled plastics, suppression of occurrence, and response to micro-plastics. The policies to implement these measures include legislative restrictions and economic measures (EPR, GPP). It is especially desirable that the policies are applied differently depending on the plastic product. The Korean government has established comprehensive measures for all stages from production to recycling, but those measures are not comprehensive compared to the EU's strategy. The reason is that the refusal of waste collection makes the Korean government establish the approach from the aspect of waste management instead of the implementation of a circular economy or SDGs like the EU. The countermeasures are aimed at achieving a 50% reduction in waste generation amount and a 70% recycling rate. It is considered that the possibility of achieving the goal will increase by examining the measures and policy means in the EU's plastics strategy.

Micro-finite element and analytical investigations of seismic dampers with steel ring plates

  • Rousta, Ali Mohammad;Azandariani, Mojtaba Gorji
    • Steel and Composite Structures
    • /
    • 제43권5호
    • /
    • pp.565-579
    • /
    • 2022
  • This study investigated the yielding capacity and performance of seismic dampers constructed with steel ring plates using numerical and analytical approaches. This study aims to provide an analytical relationship for estimating the yielding capacity and initial stiffness of steel ring dampers. Using plastic analysis and considering the mechanism of plastic hinge formation, a relation has been obtained for estimating the yielding capacity of steel ring dampers. Extensive parametric studies have been carried out using a nonlinear finite element method to examine the accuracy of the obtained analytical relationships. The parametric studies include investigating the influence of the length, thickness, and diameter of the ring of steel ring dampers. To this end, comprehensive verification studies are performed by comparing the numerical predictions with several reported experimental results to demonstrate the numerical method's reliability and accuracy. Comparison is made between the hysteresis curves, and failure modes predicted numerically or obtained/observed experimentally. Good agreement is observed between the numerical simulations and the analytical predictions for the yielding force and initial stiffness. The difference between the numerical models' ultimate tensile and compressive capacities was observed that average of about 22%, which stems from the performance of the ring-dampers in the tensile and compression zones. The results show that the steel ring-dampers are exhibited high energy dissipation capacity and ductility. The ductility parameters for steel ring-damper between values were 7.5 to 4.1.

The numerical investigation of tensile strength of coal model on the performance of coal plow using Particle Flow Code

  • Fu, Jinwei;Haeri, Hadi;Sarfarazi, Vahab;Marji, Mohammad Fatehi;Li, Tong
    • Structural Engineering and Mechanics
    • /
    • 제82권6호
    • /
    • pp.713-724
    • /
    • 2022
  • Effects of coal tensile strength and plow configuration on the coal fragmentation process was modeled by two-dimensional particles flow code (PFC2D). Three tensile strength values, 0.5, 1,5 and 3.5 MPa were considered in this numerical study. The cutters of plow penetrated in the coal for 4 mm at a rate of 0.016 m/s. According to the PFC manual, the local damping factor was 0.7. Three failure mechanism of coal during the fragmentation process by plow were modelled. The coal material beneath the cutters showed the elastic, plastic and fracturing behaviors in this analysis. In all the models, the plastic zone was fractured and some micro-cracks were induced but the elastic zone remained undamaged. It was observed that the tensile strength affected the failure mechanism of coal significantly and as it increased the extent of the fractured zone underneath the plow cutter decreased during the fragmentation process.

초정밀 평삭가공과 마이크로 펀칭가공을 위한 하이브리드 가공장비 및 공정기술 개발 (Development of Hybrid Machining System and Hybrid Process Technology for Ultra-fine Planing and Micro Punching)

  • 김한희;전은채;차진호;이재령;김창의;최환진;제태진;최두선
    • 한국기계가공학회지
    • /
    • 제12권6호
    • /
    • pp.10-16
    • /
    • 2013
  • Ultra-fine planing and micro punching are separately used for improving surface roughness and machining dot patterns, respectively, of metal molds. If these separate machining processes are applied for machining of identical molds, there could be an aligning mismatch between the machine tool and the mold. A hybrid machining system combining ultra-fine planing and micro punching was newly developed in this study in order to solve this mismatch; hybrid process technology was also developed for machining dot patterns on a mirror surface of a metal mold. The hybrid machining system has X, Y, and Z axes, and a cam axis for ultra-fine planing. The cam axis and attachable and removable solenoid actuators for micro punching can make large and small sizes of dot patterns, respectively. Ultra-fine planing was applied in the first place to improve the surface roughness of a metal mold; the measured surface roughness was about 20nm. Then, micro punching was applied to machine dot patterns on the same mold. It was possible to control the diameter of the dot patterns by changing the input voltage of the solenoid actuator. Before machining, severe inhomogeneous plastic deformation around the machined dot patterns was also removed by annealing heat treatment. Therefore, it was verified that metal molds with dots patterns for optical products can be machined using a hybrid machining system and the hybrid process technology developed in this study.

박형 기판의 사면 접합 공정 및 인장 특성 평가 (Scarf Welding of Thin Substrates and Evaluation of the Tensile Properties)

  • 강범석;나지후;고명준;손민정;고용호;이태익
    • 마이크로전자및패키징학회지
    • /
    • 제30권3호
    • /
    • pp.102-110
    • /
    • 2023
  • 본 연구에서는 플렉서블 레이저 투과 용접 (flexible laser transmission welding, f-LTW)을 이용한 박형 기판의 사면 접합 (scarf welding) 공정을 개발하였다. 플렉서블 응용을 위해 경사면의 기울기에 따른 인장 강도의 거동을 조사하였다. 박형 기판으로써 100 ㎛ 이하 두께의 플라스틱 기판이 사용되었으며, 사면 접합을 위해서 기판의 말단에 경사면을 형성하는 지그 장치를 개발하였다. 플렉서블 고분자 기판에 대한 경사면 맞대기 접합을 개발함으로써 공정 후 접합부 두께가 증가하지 않는 유연 접합 기술 개발에 성공하였다. 단축 인장시험을 통해 접합부의 인장 강도를 평가하였으며, 그 결과 경사면의 기울기가 완만할수록 인장 강도가 증가함을 확인하였다. 경사각에 따른 접합 계면에서의 응력 분석을 수행하여 접합 구조 설계 인자를 규명하였다. 본 결과는 동일한 공정 조건에서 접합부의 형상에 따라서 인장 강도가 크게 달라질 수 있음을 시사하므로 접합 공정에서 접합부 형상을 고려하는 것에 대한 중요성을 확인할 수 있다.

반구형 플라스틱 구조체 성형을 위한 프리폼 몰드 사출성형공정 최적화 (Optimization of preform mold injection molding process for hemispheric plastic structure fabrication)

  • 박정연;고영배;김동언;하석재;윤길상
    • Design & Manufacturing
    • /
    • 제13권2호
    • /
    • pp.30-36
    • /
    • 2019
  • Traditional cell culture(2-dimensional) is the method that provide a nutrient and environment on a flat surface to cultivate cells into a single layer. Since the cell characteristics of 2D culture method is different from the characteristics of the cells cultured in the body, attempts to cultivate the cells in an environment similar to the body environment are actively proceeding in the industry, academy, and research institutes. In this study, we will develop a technology to fabricate micro-structures capable of culturing cells on surfaces with various curvatures, surface shapes, and characteristics. In order to fabricate the hemispheric plastic structure(thickness $50{\mu}m$), plastic preform mold (hereinafter as "preform mold") corresponding to the hemisphere was first prepared by injection molding in order to fabricate a two - layer structure to be combined with a flat plastic film. Then, thermoplastic polymer dissolved in an organic solvent was solidified on a preform mold. As a preliminary study, we proposed injection molding conditions that can minimize X/Y/Z axis deflection value. The effects of the following conditions on the preform mold were analyzed through injection molding CAE, [(1) coolant inlet temperature, (2) injection time, (3) packing pressure, (4) volume-pressure (V/P). As a result, the injection molding process conditions (cooling water inlet temperature, injection time, holding pressure condition (V / P conversion point and holding pressure size)) which can minimize the deformation amount of the preform mold were derived through CAE without applying the experimental design method. Also, the derived injection molding process conditions were applied during actual injection molding and the degree of deformation of the formed preform mold was compared with the analysis results. It is expected that plastic film having various shapes in addition to hemispherical shape using the preform mold produced through this study will be useful for the molding preform molding technology and cast molding technology.

무광부식 패턴을 갖는 자동차 내장부품인 HD Switch Panel의 제조 및 전사성 평가 (Development and transcription estimation of an automotive interior plastic part(HD Switch Panel) with no glossy etching pattern)

  • 김영균;김동학;손영곤
    • 한국산학기술학회논문지
    • /
    • 제10권11호
    • /
    • pp.3280-3286
    • /
    • 2009
  • 본 논문에서는 미세 무광부식 패턴을 갖는 HD Switch Panel 자동차 부품을 개발하는 것으로, 제품 디자인을 통해 금형을 설계, 제작하였다. 최적화된 금형 제작을 위하여 CAE(Computer Aided Engineering)해석을 통하여 사출성형 공정에서 나타날 수 있는 문제점과 부품의 수축 변형을 정량적으로 예측하였다. 그리고, 금형표면의 가열온도와 실제 금형온도를 비교함으로써 공정변수 조절을 통해 사출성형조건의 최적화도 달성할 수 있었다. 한편, 순간금형표면가열방식을 이용한 성형기술인 E-MOLD를 적용하여 자동차 내장부품용 HD Switch Panel 사출성형품을 제작하였고, 전자현미경과 원자현미경을 이용한 표면 평가 및 광택도 측정을 통하여 무광부식 패턴의 전사율 향상으로 인한 무광 특성이 향상됨(2.5이상$\to$1.5~1.7)을 확인하였다.