• Title/Summary/Keyword: Micro perforated plate

Search Result 6, Processing Time 0.017 seconds

Sound absorption of micro-perforated elastic plates in a cylindrical impedance tube (원통형 임피던스 튜브 내 미세천공 탄성 판의 흡음)

  • Kim, Hyun-Sil;Kim, Bong-Ki;Kim, Sang-Ryul;Lee, Seong-Hyun;Ma, Pyung-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.4
    • /
    • pp.181-187
    • /
    • 2018
  • In this paper, sound absorption of micro-perforated elastic plates installed in an impedance tube of a circular cross-section is discussed using an analytic method. Vibration of the plates and sound pressure fields inside the duct are expressed in terms of an infinite series of modal functions, where modal functions in the radial direction is given in terms of the Bessel functions. Under the plane wave assumption, a low frequency approximation is derived by including the first few plate modes, and the sound absorption coefficient is given in terms of an equivalent impedance of a single surface. The sound absorption coefficient using the proposed formula is in excellent agreement with the result by the FEM (Finite Element Method), and shows dips and peaks at the natural frequencies of the plate. When the perforation ratio is very small, the sound absorption coefficient is dominated by the vibration effect. However, when the perforation ratio reaches a certain value, the sound absorption is mainly governed by the rigid MPP (Micro-Perforated Plate), while the vibration effect becomes very small.

Sound absorption of micro-perforated thin plates in a duct (덕트내 미세천공 박판의 흡음)

  • Kim, Hyun-Sil;Kim, Bong-Ki;Kim, Sang-Ryul;Seo, Yun-Ho;Ma, Pyung-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.305-313
    • /
    • 2017
  • In this paper, sound absorption of thin elastic plates installed in a rigid duct is discussed using an analytic method. The number of plates can be one or two, and each plate might have micro-perforation. Vibration of the plates and sound pressure fields inside the duct and air cavity are expressed in terms of an infinite series of modal functions. Under the plane wave assumption, a low frequency approximation is derived by including the first few plate modes. It is found that the sound absorption coefficient of the plates without micro-perforation shows sharp peaks at resonance frequencies, and due to the interaction between the plates and air cavity, the resonance frequencies move as the cavity depth changes. For the case of micro-perforated plates, it is found that the sound absorption is mainly affected by the perforation ratio. When the perforation ratio is order of few percent, the sound absorption is almost independent of plate vibration.

Sound transmission of multi-layered micro-perforated plates in a cylindrical impedance tube (원통형 임피던스 튜브 내 다중 미세천공 판의 음향투과)

  • Kim, Hyun-Sil;Ma, Pyung-Sik;Kim, Bong-Ki;Lee, Seong-Hyun;Seo, Yun-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.270-278
    • /
    • 2020
  • In this paper, sound transmission of Micro-Perforated Plates (MPPs) installed in an impedance tube with a circular cross-section is described using an analytic method. Vibration of the plates is expressed in terms of an infinite series of modal functions, where modal function in the radial direction is given by the Bessel function. Under the plane wave assumption, a low frequency approximation is derived, and a formula for the sound transmission coefficient of multi-layered MPPs is presented using the transfer matrix method. The Sound Transmission Losses (STLs) of single and double MPPs are computed using the proposed method and compared with those done by the Finite Element Method (FEM), which shows an excellent agreement. As the perforation increases, the STL is degraded, since the STL becomes dominated by the perforation ratio rather than by vibration of the plate. The STL shows dips at natural frequencies as well as at the mass-spring-mass resonance frequency. The proposed model for the STL prediction in this study can be applied to an arbitrary number of MPPs, where each MPP may or may not have a perforation.

An Experimental Study on the Orifice Nozzle System that Generates Micro-bubbles by Self-suction of Air with a Recirculating Flow (재순환 유동 공기 자가흡입에 의한 마이크로버블 발생 오리피스 노즐 시스템에 대한 실험적 연구)

  • Oh, Shin-il;Park, Sang-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.82-88
    • /
    • 2018
  • An experimental study was performed on the orifice nozzle system that generates micro-bubbles by air self-suction using a venturi nozzle. This study experimentally investigates the amount of air sucked into the venturi nozzle and the number of micro-bubbles generated by the orifice nozzle system in Cases 1 and 2. The experimental conditions were varied by changing the diameter of the orifice nozzle (d=2~7 mm) and the number of holes of the perforated plate nozzle (n = 2-12). In Case 1, the air self-suction was more than 2 LPM at $d{\leq}4mm$. When d = 4 mm, the total number of bubbles was 29,777, and it was confirmed that micro-bubbles occupied approximately 65% of the total number of bubbles. In Case 2, the air self-suction was maintained constant at approximately 2.5 LPM regardless of the number (n) of holes. The total amount of bubbles increased when n increased but remained constant at approximately 44,000 when $n{\geq}7EA$. It was also confirmed that more than 80% of all bubbles were micro-bubbles when $n{\geq}10EA$. Thus, the number of micro-bubbles increased by approximately 15% compared to the experimental result of Case 1, which was optimized with d = 4 mm.

Development of eco-friendly and lightweight insulation panels for offshore plant

  • Jung, Jae-Deok;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Joo, Won-Ho;Kim, Sung-Hoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.6
    • /
    • pp.554-562
    • /
    • 2016
  • Recently, regulations pertaining to the noise and vibration environment of offshore plants have been strengthened. For example, the NORSOK standards have been applied, which are very strict regulations that are comparable to those applied to passenger ships. Furthermore, the use of porous materials, such as those used in most of the current insulating panels, has been forbidden. Therefore, honeycomb-backed Micro-Perforated Plates (MPPs) are now regarded as next-generation absorber materials. This paper reports the results of parametric studies that were performed using numerical methods to determine the effect of the thickness on the performance of a honeycomb panel and the effect of the perforation ratio on the MPP performance. The numerical results were verified through experiments. Finally, we propose a combined honeycomb/MPP panel where the MPP is placed between upper and lower honeycomb panels and one end surface is also replaced with an MPP.

A modal approach for the efficient analysis of a bionic multi-layer sound absorption structure

  • Wang, Yonghua;Xu, Chengyu;Wan, Yanling;Li, Jing;Yu, Huadong;Ren, Luquan
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.249-266
    • /
    • 2016
  • The interest of this article lies in the proposition of using bionic method to develop a new sound absorber and analyze the efficient of this absorber in a ski cabin. Inspired by the coupling absorption structure of the skin and feather of a typical silent flying bird - owl, a bionic coupling multi-layer structure model is developed, which is composed of a micro-silt plate, porous fibrous material and a flexible micro-perforated membrane backed with airspace. The finite element simulation method with ACTRAN is applied to calculate the acoustic performance of the multi-layer absorber, the vibration modal of the ski cabin and the sound pressure level (SPL) near the skier's ears before and after pasting the absorber at the flour carpet and seats in the cabin. As expected, the SPL near the ears was significantly reduced after adding sound-absorbing material. Among them, the model 2 and model 5 showed the best sound absorption efficiency and the SPL almost reduced 5 dB. Moreover, it was most effctive for the SPL reduction with full admittance configuration at both the carpet and the seats, and the carpet contribution seems to be predominant.