• Title/Summary/Keyword: Micro nozzle

Search Result 209, Processing Time 0.022 seconds

Surface-shape Processing Characteristics and Conditions during Trajectory-driven Fine-particle injection Processing (궤적 구동 미세입자 분사가공 시 표면 형상 가공 특성 및 가공 조건)

  • Lee, Hyoung-Tae;Hwang, Chul-Woong;Lee, Sea-Han;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.19-26
    • /
    • 2021
  • In fine-particle injection processing, hard fine particles, such as silicon carbide or aluminum oxide, are injected - using high-pressure air, and a small amount of material is removed by applying an impact to the workpiece by spraying at high speeds. In this study, a two-axis stage device capable of sequence control was developed to spray various shapes, such as circles and squares, on the surface during the micro-particle jetting process to understand the surface-shape micro-particle-processing characteristics. In the experimental device, two stepper motors were used for the linear movement of the two degree-of-freedom mechanism. The signal output from the microcontroller is - converted into a signal with a current sufficient to drive the stepper motor. The stepper motor rotates precisely in synchronization with the pulse-signal input from the outside, eliminating the need for a separate rotation-angle sensor. The major factors of the processing conditions are fine particles (silicon carbide, aluminum oxide), injection pressure, nozzle diameter, feed rate, and number of injection cycles. They were identified using the ANOVA technique on the design of the experimental method. Based on this, the surface roughness of the spraying surface, surface depth of the spraying surface, and radius of the corner of the spraying surface were measured, and depending on the characteristics, the required spraying conditions were studied.

Effects of Different Fluid Properties on Velocity and Size of Droplets from Pressure-Swirl Nozzles (유체의 물성치 변화가 압력스월노즐 분무의 속도와 입경에 미치는 영향)

  • Choi, Youn-Chul;Son, Jong-Won;Cha, Keun-Jong;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.909-914
    • /
    • 2001
  • Fluid properties which are most commonly used to evaluate spray atomization characteristics, are important because they affect velocity and size distribution of droplets. The purpose of this study was to incorporate the significant characteristics in atomization process of industrial etching spray and how each of them affects the design of precise pressure-swirl nozzles. The experiment was carried out with different viscosity and density of fluid. The macro characteristics of liquid spray, such as the spray angle and shape were captured by PMAS and the micro characteristics of liquid spray, such as droplet size and velocity were obtained by PDA. The mean velocity and SMD of droplets were measured along axial and radial direction. It was found that the higher viscosity and density resulted in the larger SMD and the lower mean velocity of droplets.

  • PDF

Optimization of Nd:YAG laser welding parameters for sealing the small Ti tube ends (소형 티타늄 튜브 끝의 밀봉용접을 위한 Nd:YAG 레이저 용접조건의 최적화)

  • Lee Hyeong Geun;Han Hyeon Su;Son Gwang Jae;Hong Sun Bok
    • Proceedings of the KWS Conference
    • /
    • v.43
    • /
    • pp.73-75
    • /
    • 2004
  • The purpose of this study is to optimize Nd:YAG laser welding parameters to seaz a Rf source into a Ti micro capsule. Ti tube ends can be sealed as some length of ぉbe end is melted and coalesced. The exact control of the melted length is the most important to get sound sealing. The Nozzle type, tube rotating speed, tilt angle, focal position, pumping voltage, pulse frequency and pulse width were selected as the Nd:YAG laser welding Parameters. These Parameters were optimized by the Taguchi experimental method using 115 orthogonal array. Appearance and cross section of the seated tube ends were examined by SEM.

  • PDF

A Study About Biochip Combined with Micro Mixer and Reactor for DNA Ligation (마이크로 혼합기와 반응기로 구성된 DNA 결찰용 바이오칩에 관한 연구)

  • Kang, Do-Hyoung;Ahn, Yoo-Min;Hwang, Seung-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.624-632
    • /
    • 2008
  • In this research, we developed new PDMS-glass based microbiochip consisted of the micromixer and microreactor for DNA ligation. The micromixer was composed of a straight channel integrated with nozzles and pillars, and the microreactor was composed of a serpentine channel. We coated the PDMS chip surface with the 0.25wt.% PVP solution to prevent the bubble generation which was caused by the hydrophobicity of the PDMS. The new micomixer was passive type and the mixing was enhanced by a convective diffusion using the nozzle and pillar. The 10.33mm long micromixer showed the good mixing efficiency of 87.7% at 500 l/min flow rate. We could perform the DNA ligation successfully in the microbiochip, and the ligation time was shortened from 4 hours in conventional laboratory method to 5 min in the microbiochip.

Fabrication of Fine Metal Mask using Electroforming process (전주공정을 이용한 파인메탈마스크 제작)

  • Kang, D.C.;Kim, H.Y.;Jeon, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.314-317
    • /
    • 2006
  • Electroformed part is widely used in modem manufacturing industries, especially semi-conductor division. It is basically a specialized form of electroplating. So, it has very similar parameters with electroplating. The object of this study is development of the fine metal mask by electroforming process. In this paper considered two parameters. The first is relationship of UV exposure and soft baking time. The other one is thickness uniformity of electroformed parts by distance of between electrodes. This paper presents the fabrication method of fine metal mask by electroforming process.

  • PDF

A Nano-particle Deposition System for Ceramic and Metal Coating at Room Temperature and Low Vacuum Conditions

  • Chun, Doo-Man;Kim, Min-Hyeng;Lee, Jae-Chul;Ahn, Sung-Hoon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.51-53
    • /
    • 2008
  • A new nano-particle deposition system (NPDS) was developed for a ceramic and metal coating process. Nano- and micro-sized powders were sprayed through a supersonic nozzle at room temperature and low vacuum conditions to create ceramic and metal thin films on metal and polymer substrates without thermal damage. Ceramic titanium dioxide ($TiO_2$) powder was deposited on polyethylene terephthalate substrates and metal tin (Sn) powder was deposited on SUS substrates. Deposition images were obtained and the resulting chemical composition was measured using X-ray photoelectron spectroscopy. The test results demonstrated that the new NPDS provides a noble coating method for ceramic and metal materials.

Fatigue Test of MEMS Device: a Monolithic Inkjet Print

  • Park, Jun-Hyub;Oh, Yong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.798-807
    • /
    • 2004
  • A testing system was developed to improve the reliability of printhead and several printheads were tested. We developed a thermally driven monolithic inkjet printhead comprising dome-shaped ink chambers, thin film nozzle guides, and omega-shaped heaters integrated on the top surface of each chamber. To perform a fatigue test of an inkjet printhead, the testing system automatically detects a heating failure using a Wheatstone bridge circuit. Various models were designed and tested to develop a more reliable printhead. Two design parameters of the width of reinforcing layer and heater were investigated in the test. Specially., the reinforcing layer was introduced to improve the fatigue life of printhead. The life-span of heater with a reinforcing layer was longer than that without a reinforcing layer. The wider the heater was, the longer the life of printhead was.

Bio-degradable 3D-scaffold fabrication using rapid-prototyping system (쾌속조형시스템을 이용한 생체 조직 재생용 지지체 제작과 특성분석)

  • Kim, Ji-Woong;Park, Ko-Eun;Lee, Jun-Hee;Park, Su-A;Kim, Wan-Doo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1697-1699
    • /
    • 2008
  • The purpose of tissue engineering is to repair or replace damaged tissues or organs by a combination of cells, scaffold, suitable biochemical and physio-chemical factors. Among the three components, the biodegradable scaffold plays an important role in cell attachment and migration. In this study, we designed 3D porous scaffold by Rapid Prototyping (RP) system and fabricated layer-by-layer 3D structure using Polycarprolactone (PCL) - one of the most flexible biodegradable polymer. Furthermore, the physical and mechanical properties of the scaffolds were evaluated by changing the pore size and the strand diameter of the scaffold. We changed nozzle diameter (strand diameter) and strand to strand distance (pore size) to find the effect on the mechanical property of the scaffold. And the surface morphology, inner structure and storage modulus of PCL scaffold were analyzed with SEM, Micro-CT and DMA.

  • PDF

Performance Analysis of an Industrial Inkjet Printing Head Using the 1D Lumped Model

  • Sim, Won-Chul;Park, Sung-Jun;Joung, Jae-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.50-53
    • /
    • 2008
  • A design approach using a one-dimensional (1D) lumped model was studied and applied to an industrial inkjet printing head design for micro patterning on printed circuit boards. For an accurate analysis, a three-dimensional piezoelectric-driven actuator model was analyzed and its jetting characteristics were applied to 1Danalysis model. The performance of the 1D lumped model was verified by comparing measured and simulated results. The developed 1D model helped to optimize the design and configuration of the inkjet head and could be implemented in the design of multi-nozzle inkjet printing heads to improve the jetting frequency and minimize crosstalk.

A Study on the Fabrication of Various 3D Microstructures using Polymer Deposition System (폴리머 적층 시스템을 이용한 다양한 3 차원 미세 구조물 제작에 관한 연구)

  • Kim, Jong-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.686-692
    • /
    • 2012
  • Solid free-form fabrication (SFF) technology was developed to fabricate three-dimensional (3D) scaffolds for tissue engineering (TE) applications. In this study, we developed a polymer deposition system (PDS) and created 3D microstructures using a bioresorbable polycaprolactone (PCL) polymer. Fabrication of 3D scaffolds by PDS requires a combination of several devices, including a heating system, dispenser, and motion controller. The system can process a polymer with extremely high precision by using a 200 ${\mu}m$ nozzle. Based on scanning electron microscope (SEM) images, both the line width and the piled line height were fine and uniform. Several 3D micro-structures, including the ANU pattern (a pattern named after Andong National University), $45^{\circ}$ pattern square, frame, cylindrical, triangular, cross-shaped, and hexagon, have been fabricated using the polymer deposition system.