• 제목/요약/키워드: Micro milling machine tool

검색결과 34건 처리시간 0.026초

마이크로 엔드밀 가공시 가공인자가 표면거칠기 향상에 미치는 영향 (Effects of Machining Conditions for Improvement of Surface Roughness on Micro End-Milling)

  • 조병무;김상진;박희상;배명일
    • 한국공작기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.71-76
    • /
    • 2008
  • Micro end-milling is one of effective technology that is able to do ultra-precision machining while increasing the productivity and has wide application field. But selection of machining condition is very difficult because of complicated machining mechanism. Therefore this study was carried out to select working factors to get the optimum surface roughness. Machining condition are depth of cut, feed rate and spindle revolution. The result of this study showed that Surface roughness was affected, in the other of depth of cut, spindle revolution, feed rate. And this study provided an regression equation relating surface roughness to working factors through Regression Analysis and determination coefficient of regression equation had a satisfactory reliability of 79%.

마이크로 엔드밀링에서 가공깊이에 따른 가공변질층의 특성 (The Characteristics of Damaged Layer According to Depth of Cut in Micro Endmilling)

  • 이종환;권동희;박진효;김병민;정융호;강명창;이성용;김정석
    • 한국공작기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.77-83
    • /
    • 2007
  • The study on damaged layer is necessary for machinability improvement in micro machining. The damaged layer in metal cutting is derived from plastic deformation and transformation of metal structure. The damaged layer affects micro mold life and micro machine parts. In this study, the damaged layer of micro machined surface of copper is evaluated according to various machining condition. The damaged layer structure and metallurgical characteristics are measured by optical microscope, and evaluated by cutting forces and surface roughness. The scale of this damaged layer depends on cutting process parameters and machining environments. By experimental results, depth of damaged layer was increased with increasing of cutting depth, also the damaged layer is less occurred in down-milling compared to up-milling during micro endmilling operation.

마이크로 엔드밀링 공정의 절삭계수 모델링 및 최적 공정설계 (Modeling of Cutting Parameters and Optimal Process Design in Micro End-milling Processes)

  • 이광조;정성종
    • 한국생산제조학회지
    • /
    • 제18권3호
    • /
    • pp.261-269
    • /
    • 2009
  • Micro end-milling process is applied to fabricate precision mechanical parts cost-effectively. It is a complex and time-consuming job to select optimal process conditions with high productivity and quality. To improve the productivity and quality of precision mechanical parts, micro end-mill wear and cutting force characteristics should be studied carefully. In this paper, high speed machining experiments are studied to construct the optimum process design as well as the mathematical modeling of tool wear and cutting force related to cutting parameters in micro ball end-milling processes. Cutting force and wear characteristics under various cutting conditions are investigated through the condition monitoring system and the design of experiment. In order to construct the cutting database, mathematical models for the flank wear and cutting force gradient are derived from the response surface method. Optimal milling conditions are extracted from the developed experimental models.

  • PDF

ER유체를 이용만 마이크로 폴리싱 특성 (Characteristics of Micro-polishing using the Electro-rheological Fluid)

  • 이재종;이응숙;황경현;민승기
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.38-42
    • /
    • 2002
  • In the recent, electro-rheological fluid has been used for micro polishing of the 3-dimensional micro-aspherical lens and some sectional parts with defects on the wide flat wafer. The ER fluid has the properties that its viscosity has drastic changed under some electric fields. Therefore, ER fluid can be applicable to the micro polishing fur some parts using these properties. In this paper, the experimental device has been constructed using the precision milling machine in order to micro polishing far some sectional parts of a 4 inches wafer It is consisted of a small steel electrode, a wafer fixture, DC10mA and 5KV power supply unit, and a controller unit. Using the ER experimental device, possibility of amending for wide flat wafer and micro polishing of some micro part has been analyzed.

  • PDF

나노유체를 이용한 메소스케일 밀링 가공 특성에 관한 실험적 연구 (Experimental Study on Meso-Scale Milling Process Using Nanofluid Minimum Quantity Lubrication)

  • 이필호;남택수;;이상원
    • 대한기계학회논문집A
    • /
    • 제34권10호
    • /
    • pp.1493-1498
    • /
    • 2010
  • 본 논문에서는 압축냉각공기, MQL 및 $MoS_2$ 나노유체 MQL 을 적용한 메소스케일 밀링의 가공 특성에 관한 실험적 연구를 수행하였다. 마이크로/메소 밀링 가공 실험 수행을 위하여 BLDC 스핀들과 DC 모터슬라이드를 장착한 데스크톱 크기의 3 자유도 메소 스케일 기계가공 시스템을 구현하였고, 가공 시편의 표면거칠기 측정 및 분석을 통해 가공성능 평가를 수행하였다. 실험을 통해 압축냉각공기, MQL 및 $MoS_2$ 나노유체 MQL 을 사용한 경우 건식가공에 비하여 표면거칠기가 향상되는 것을 발견하였으며 특히 $MoS_2$ 나노유체 MQL 과 압축냉각공기를 동시에 적용하였을 경우의 가공 표면거칠기가 가장 우수함을 확인하였다.

절삭공정의 적응제어에 관한 연구 (A Study on the Adaptive Control in Machining Process)

  • 송지복;이만형;이시복
    • 한국정밀공학회지
    • /
    • 제2권3호
    • /
    • pp.77-83
    • /
    • 1985
  • Adaptive control technique for a milling process is developed and implemented in an NC milling machine retrofitted to enable the micro-computer control. The control algorithm has the objects to guarantee the optimal tool life which can give the predetemined allowable lower limit of surface roughness. The experimental results show 1) that the extended tool life equation has good reliability in normal tool wear conditions. 2) and that the proposed adaptive control technique, which determine the optimal cutting condition by basing on the tool life equation modified continually according to the tool wear measured in real time, performs well.

  • PDF

마이크로밀링에서 피에조 구동기의 전압제어를 이용한 원주가공의 성능향상 (Improvement of circular cutting using voltage control of piezo-actuator in micro milling)

  • 석진우;정병묵;고태조;김희술;박종권
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.446-452
    • /
    • 2005
  • Recently, there are many studies for the micro-machining using Piezo actuator. However, because of its step by step motion, it is nearly impossible to increase the machining accuracy for a circular path. To increase the accuracy, it is well known that it is necessary the finer and synchronous movement for x-y axes. Therefore, this paper proposes a voltage control for finer movement of the actuator, and realizes a synchronous control for the x-y axes. The experimental results show that the machining accuracy is remarkably improved.

  • PDF

소구경 미세홈 고속가공시 가공환경변화에 따른 가공성 평가 (Evaluation of Machinability of Micro groove by Cutting Environments in High Speed Machining using Ball End Mill)

  • 정연행;이태문;강명창;이득우;김정석
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.32-37
    • /
    • 2002
  • High speed machining is one of most effective technologies to improve productivity. It can give great advantage for manufacture of die and Moulds. However, when the high speed machining of materials, especially in machining of micro groove, a severely thermal demage was generated on workpiece and tool. Generally, the cutting fluid is used to improve penetration, lubrication, and cooling effect. In order to rise the performance of lubrication, it contains extreme pressure agents (Cl, S, P). But the environment of work room go bad by those additive Therefore, the compressed chilly air with Oil mist system was developed to replace the conventional cutting fluid system. This paper carried out the tests to evaluate the machinability by the cutting environment in high speed micro groove machining of NAK80 (HRC40). Compressed chilly air with oil mist was ejected on the contact area between cutting edge and workpiece. The effectiveness of this developed compressed chilly air with oil mist system was evaluated in terms of tool life. The results showed that the tool life of carbide tool coated TiAIN with compressed chilly air mist cooling was much longer than with dry and flood coolant when cutting the material.

  • PDF

초소경 엔드밀링을 이용한 미세 가공특성 분석 및 응용가공 (Analysis of Micro Machining Characteristics using End-milling and Its Applications)

  • 최환진;박언석;전은채;제태진;최두선
    • 한국정밀공학회지
    • /
    • 제29권12호
    • /
    • pp.1279-1284
    • /
    • 2012
  • Micro structures which are widely used at various fields are commonly fabricated by lithograph, etching and laser methods. Recently, with the emergence of micro tools and ultra-precision machine tools, fabrication of the micro structures obtained using end-milling are studied. However, there are some problems due to the diameter of the micro end-mill getting smaller below $100{\mu}m$. The micro run-out resulted from miniaturization of end-mills have influence seriously on accuracy of micro structures. The error of run-out with a tooling jig showed a decrease of about $9.3{\mu}m$. Furthermore, micro structures with width of $30{\mu}m$ could be applied through experiments of slot machining obtained using 30 and $50{\mu}m$ end-mill. Also, narrow angle structures with $30^{\circ}$ angle could be applied through analysis of machining acute angle structures. Based on basic experiments, micro fluidics channels and spiral patterns for air bearing were machined.

절삭력 계수를 통한 마이크로 가공의 절삭 특성 분석 (Analysis of cutting characteristics in micro machining using cutting force coefficient)

  • 이한울;조동우;박종권
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.483-488
    • /
    • 2005
  • The complex three-dimensional miniature components are needed for a wide range of applications from the aerospace to the biomedical industries. To manufacture these products, micro machining that can make a high aspect ratio part and has good accuracy is widely researched. In this paper, cutting characteristics were analyzed in micro machining using cutting force coefficients, which are the specific cutting force for normal and frictional direction of rake surface. From measured cutting force in micro end milling, cutting condition independent cutting force coefficients were determined and used for analysing the characteristics of micro cutting. Using the cutting force coefficient, 써써써.

  • PDF