• 제목/요약/키워드: Micro milling

검색결과 227건 처리시간 0.027초

레이저빔을 이용한 알루미늄의 미세가공 (Micro Machining of Aluminium using Pulsed Laser Beam)

  • 신홍식
    • 융복합기술연구소 논문집
    • /
    • 제4권2호
    • /
    • pp.41-45
    • /
    • 2014
  • Micro fabrication technologies of aluminium have been required to satisfy many demands in technology fields. Pulsed laser beam machining can be an alternative method to accomplish the micro machining of aluminium. Pulsed laser beam can be applied to micro machining such as micro drilling and milling. Using pulsed laser beam, the machining characteristics of aluminium in micro drilling and milling were investigated according to average power, repetition rate, moving speed of spot. The laser beam machining with the optimal conditions can achieve precise micro figures. As a result, micro pattern, text and structures on aluminium surface was successfully fabricated by pulsed laser beam machining.

Micro/Meso부품 대응형 마이크로 기계가공시스템 기술 연구 (Design of Micro-Machining System for Micro/Meso Mechanical Component)

  • 박종권;경진호;노승국;김병섭;박중호
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.377-382
    • /
    • 2005
  • This paper describes the design of micro machine tools system for mechanical machining of micro/meso scale mechanical parts. The micro machining systems such as $\mu-Late$, $\mu-milling/drilling$ machine and $\mu-grinding$ machine are the basic elements constructing $\mu-factory$ which gains more attention recently because of increasing needs of mico and nano-parts in various industrial and medical area. A miniaturized 3-axis milling machine with VCM stage and air spindle and palm-top size micro-late are designed, and air bearing stage and stepwise linear motion system with PZT are studied for motion system. The micro cutting characteristics are investigated experimentally, and reconfigurable machine structures are also considered.

  • PDF

Spark Plasma Sintering of Stainless Steel Powders Fabricated by High Energy Ball Milling

  • Chang, Si Young;Oh, Sung-Tag;Suk, Myung-Jin;Hong, Chan Seok
    • 한국분말재료학회지
    • /
    • 제21권2호
    • /
    • pp.97-101
    • /
    • 2014
  • The 304 stainless steel powders were prepared by high energy ball milling and subsequently sintered by spark plasma sintering, and the microstructural characteristics and micro-hardness were investigated. The initial size of the irregular shaped 304 stainless steel powders was approximately 42 ${\mu}m$. After high energy ball milling at 800 rpm for 5h, the powders became spherical with a size of approximately 2 ${\mu}m$, and without formation of reaction compounds. From TEM analysis, it was confirmed that the as-milled powders consisted of the aggregates of the nano-sized particles. As the sintering temperature increased from 1073K to 1573K, the relative density and micro-hardness of sintered sample increased. The sample sintered at 1573K showed the highest relative density of approximately 95% and a micro-hardness of 550 Hv.

미세정밀밀링 가공을 위한 검사시편의 가공조건에 따른 표면거칠기에 대한 영향 분석 (The Effect of Surface Roughness according to Machining Conditions of Test Specimen for Precision Micro-milling Machining)

  • 심민섭;김동현;이춘만
    • 한국정밀공학회지
    • /
    • 제32권1호
    • /
    • pp.49-55
    • /
    • 2015
  • Recently, many researchers and industry are looking for ways to decrease the use of lubricants because of economical and environmental reasons. One of the lubrication technologies is the MQL method. This study presents a research of MQL and Wet milling processes of Al 6061 material. For this experiment, the test specimen is suggested, and various machining conditions are applied. And, shape of micro-pattern which has been recently spotlighted is included in the test specimen. In order to compare MQL with Wet machining, several milling experiments were carried out, varying feed rate, cutting speed, depth of cut, etc. Finally, the surface roughness results of machining tests according to the process conditions were measured. It is expected that the results of machining experiments can be used to predict the surface roughness of various MQL milling processes.

마이크로 밀링과 X-선 리소그래피 공정을 이용한 다층 마이크로 구조물 제작 공정 개발 (Development of a Novel Fabrication Process for Multi-layered Microstructures using a Micro Milling and Deep X-ray Lithography)

  • 김종현;장석상;임근배
    • 한국정밀공학회지
    • /
    • 제31권3호
    • /
    • pp.269-275
    • /
    • 2014
  • Conventional machining technologies such as a milling process have limitations in accuracy to fabricate microstructures. Deep X-ray lithography using the synchrotron radiation is a promising micromachining process with an excellent accuracy, whereas there are difficulties in the fabrication of multi-layered structures. Therefore, it is mainly used for fabricating simple mono-layered microstructures with a high aspect ratio. In this study, a novel technology for fabricating multi-layered microstructures is proposed by combining two processes. In advance, an X-ray resist material is cut and machined into various shapes and heights by the micro milling process. Subsequent X-ray irradiation process facilitates the fabrication of multi-layered microstructures. The proposed technology can overcome the limitation of the pattern accuracy in conventional milling process and the difficulty of the multi-layered machining in x-ray process. The usefulness of the proposed technology is demonstrated in this study by applying the technique in the realization of various multi-layered microstructures.

마이크로 밀링 EDM 머신 개발 및 가공특성 분석 (Development of Micro Milling EDM and Analysis of Machined Characteristics)

  • 김선호;임한석
    • 한국기계가공학회지
    • /
    • 제10권1호
    • /
    • pp.1-7
    • /
    • 2011
  • Micromachining is gaining popularity due to recent advancements in MEMS(Micro Electro Mechanical Systems). Using conventional micromachining, it is relatively difficult to produce moving components in the order of microns. Photolithography for silicon material has high accuracy machining, but it has low aspect ratio. X-ray lithography has ultra high accuracy machining, but it has expensive cost. Micro-EDM(electro discharge machining) has been gaining popularity as a new alternative method to fabricate micro-structures. In this study, Micro-EDM machine is developed available for fabricate micro-structures and two processes such as side cut EDM and milling EDM is proposed. Several sets of experiment results have been performed to study the characteristics of the machining process.

마이크로 프리즘 패턴의 엔드밀링에서 공구 마모와 정밀도 (Tool Wear Rate and Accuracy of Patterns in Micro Prismatic End-milling)

  • 안주은;이정희;곽재섭
    • 한국기계가공학회지
    • /
    • 제17권3호
    • /
    • pp.1-6
    • /
    • 2018
  • Micro prism pattern is applying in order to get increase of luminance, control the light, and so forth especially in optics and display industry. Most patterns are fabricated by lithography, planning, and EDM, but they have limitations on the productivity or the unit cost of produce. However, ultra precision mold is one of the processes able to replace it, and assure high productivity required by industries. In this investigation, micro prismatic end-milling is suggested in order to fabricate the pattern effectively. Micro prism pattern having $100{\mu}m$ of pitch and height was machined on STD-11. After machining, the flank and boundary wear on micro end mill were measured and analyzed, as well as burr formation and dimensional accuracy of fabricated pattern were evaluated. Thus the optimal cutting conditions were derived.