• 제목/요약/키워드: Micro lens

검색결과 305건 처리시간 0.034초

마이크로 렌즈 성형시 형상예측을 위한 유한요소해석 (Finite Element Analysis for Shape Prediction on Micro Lens Forming)

  • 전병희;홍석관;표창률
    • 소성∙가공
    • /
    • 제11권7호
    • /
    • pp.581-588
    • /
    • 2002
  • Among the processes to produce micro lens, the process using press molding is a new technology to simplify the process, but it contains many unknown variables. The press-molding process proposed in this paper was simplified into two step process, the first step is the pressing to design the preform for glass element, the second step is the annealing to reduce the residual stress. It is important to estimate the amount of shrinkage of glass gob and the residual stress during process. It Is difficult to evaluate the process variables as mentioned above through the experiment. The influences due to process variables was evaluated by using FEM parametric analysis. The results in this paper can be applicable to produce micro lens.

리플로우 현상을 이용한 고 개구수를 갖는 비구면 렌즈 어레이의 제작에 관한 연구 (Study on Manufacturing Aspheric Lens Array with High NA using Reflow Phenomenon)

  • 김완진;이명복;손진승;박노철;박영필
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.644-647
    • /
    • 2003
  • Resulting from reproducibility and possibility of mass production. many researches to fabricate micro lens array using lithography have been developed. However, it still remains the level of fabricating compensation lens. Therefore, to realize the fabrication of lens having high numerical aperture can be the key technology of ultra slim optical system. Reflow phenomenon have been researched to make lens having high refractive power. And through those researches, the possibility to fabrication of high refractive power lens has been investigated. In this paper, we analyze the effect of many parameters in reflow process to get an aspheric shape with high repeatability. And we make possible to estimate shape error, through we give direct information about decrease in volume of photoresist.

  • PDF

A Single Lens Micro-Angle Sensor

  • Saito, Yusuke;Gao, Wei;Kiyono, Satoshi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권2호
    • /
    • pp.14-19
    • /
    • 2007
  • Angle sensors based on the principle of autocollimation, which are usually called autocollimators, can accurately measure small tilt angles of a light-reflecting flat surface. This paper describes a prototype micro-angle sensor that is based on the laser autocollimation technique. The new angle sensor is compact and consists of a laser diode as the light source and a quadrant photodiode as a position-sensing device. Because of its concise design, the microangle sensor facilitates dynamic measurements of the angular error motions of a precision stage without influencing the original dynamic properties of the stage. This is because the sensor only requires a small extra target mirror to be mounted on the stage. The sensitivity of the angle detection is independent of the focal length of the objective lens; therefore, an objective lens with a relatively short focal length is employed to reduce the size of the device. The micro-angle sensor uses a single lens for the both the laser collimation and focusing, which distinguishes it from the conventional laser autocollimation method that has separate collimate and objective lenses. The new micro-angle sensor has dimensions of $15.1\times22.0\times14.0mm$ and its resolution is better than 0.1 arc-second The optical design and performance of this micro-angle sensor were verified by experimental results.

355nm UV 레이저를 이용한 마이크로 렌즈 어레이 쾌속 제작 (Rapid Fabrication of Micro Lens Array by 355nm UV Laser Irradiation)

  • 제순규;박강수;오재용;김광렬;박상후;고정상;신보성
    • 한국레이저가공학회지
    • /
    • 제11권2호
    • /
    • pp.26-32
    • /
    • 2008
  • Micro lens array (MLA) is widely used in information technology (IT) industry fields, for examples such as a projection display, an optical power regulator, a micro mass spectrometer and for medical appliances. Recently, MLA have been fabricated and developed by using a reflow method, micro etching, electroplating, micromachining and laser local heating. Laser local thermal-expansion (LLTE) technology demonstrates the formation of microdots on the surface of polymer substrate, in this paper. We have also investigated the new direct fabrication method of placing the MLA on the surface of a SU-8 photoresist layer. We have obtained the 3D shape of the micro lens processed by UV laser irradiation and have experimentally verified the optimal process conditions.

  • PDF

그레이스케일 마스크를 이용한 미소렌즈 배열의 제작 (Fabrication of micro-lens arrays using a grayscale mask)

  • 조두진;성승훈
    • 한국광학회지
    • /
    • 제13권2호
    • /
    • pp.117-122
    • /
    • 2002
  • 홀로그래픽 필름으로 제작된 그레이스케일 마스크를 통하여 두꺼운 포토레지스트를 자외선으로 근접 노광하여 주기 300 $\mu\textrm{m}$, 두께 17 $\mu\textrm{m}$, 초점거리 2.2 mm인 10$\times$10 미소렌즈 배열을 제작하였다. 그레이스케일 마스크는 컴퓨터로 설계한 미소렌즈 배열을 필름 출력기를 이용하여 고해상도 흑백 필름에 그레이스케일로 기록 및 현상하고 이를 다시 홀로그래픽 필름에 축소복사(6.6배)하여 제작하였다. 본 제작방법은 저렴한 비용으로 100%에 가까운 fill-factor를 얻을 수 있고, 비구면 렌즈를 구현하기가 쉽다는 장점을 가진다.

프레넬 렌즈 UV 미세복제 공정에서의 전사특성에 관한 연구 (Micro-replication quality of Fresnel Lens in UV micro-replication process)

  • 임지석;이남석;김석민;강신일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.79-82
    • /
    • 2005
  • Fresnel lens has number of applications in the optical systems because of its advantages. It is nearly flat lens that has small weight. It is conventionally used in lighthouse beacons, condensing unit of overhead projector and etc. Recently, demands of small size optical systems such as display units, information storage systems, optical detecting units had increased. Conventional manufacturing process of high quality Fresnel lens is direct machining. But it is not suitable for mass production because of high cost and long cycle time. Replication process is more suitable for mass production. But the Fresnel lens has number of sharp blade shape prism. In the replication process, this blade shape causes defects that can affect optical efficiency. In this study, replication process of blade shape pattern that has maximum height of $280{\mu}m$, aspect ratio 1.4 for Fresnel lens application.

  • PDF

유체 렌즈의 초점과 유동 인자의 상관관계에 대한 수치해석 (Numerical study on the relation between flow parameters and the focal point of fluidic lens)

  • ;김대겸
    • 한국가시화정보학회지
    • /
    • 제17권2호
    • /
    • pp.90-95
    • /
    • 2019
  • In the present work, the effect of flow parameters such as volume flow rate on focal point of fluidic micro lens is investigated numerically. ANSYS Fluent is used for simulations, and the flow parameters and number of simulations are determined using the space filling method of design of experiment (DOE). Having determined the location of interfaces between fluids inside the micro lens which acts as the lens curvature, a ray tracking simulation on each case is performed using COMSOL Multiphysics to determine the focal point for each lens. These data are then used to provide a relation between flow parameters and the focal point of the lens.

마이크로 금형 가공 및 사출성형에 관한 연구 (Micro Parts Machining and Injection Molding Technology)

  • 최두선;제태진;이응숙;신보성
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.452-457
    • /
    • 2003
  • As a fundamental study on developing elements with micro shape, micro mold parts machining and experiment of injection molding using it were performed. The ultra precision micro machining system with high functionality was fabricated, and utilized in the machining of micro parts. By using this machining system and micro end-mill tool, a micro circle column structure of high aspect ratio, diameter 60 $\mu\textrm{m}$, height 500 $\mu\textrm{m}$, was fabricated. And a micro lens molds were fabricated by using ball end-mill tool of 300 $\mu\textrm{m}$ diameter and diamond fly-cut tool of 150 $\mu\textrm{m}$ radius. A micro injection molding machine, which is clamping force 1.75 ton, injection capacity 2.8cc, was fabricated for injection molding experiment using micro molds. The injection molding experiment was performed by using the injection molding machine, micro cylinder structures and lens molds. This paper introduces these micro machining system and injection molding machine and demonstrates examples of injection molding using fabricated molds.

  • PDF