• Title/Summary/Keyword: Micro lens

Search Result 305, Processing Time 0.027 seconds

FREE-FLOATING PLANETS, THE EINSTEIN DESERT, AND 'OUMUAMUA

  • Gould, Andrew;Jung, Youn Kil;Hwang, Kyu-Ha;Dong, Subo;Albrow, Michael D.;Chung, Sun-Ju;Han, Cheongho;Ryu, Yoon-Hyun;Shin, In-Gu;Shvartzvald, Yossi;Yang, Hongjing;Yee, Jennifer C.;Zang, Weicheng;Cha, Sang-Mok;Kim, Dong-Jin;Kim, Seung-Lee;Lee, Chung-Uk;Lee, Dong-Joo;Lee, Yongseok;Park, Byeong-Gon;Pogge, Richard W.
    • Journal of The Korean Astronomical Society
    • /
    • v.55 no.5
    • /
    • pp.173-194
    • /
    • 2022
  • We complete the survey for finite-source/point-lens (FSPL) giant-source events in 2016-2019 KMTNet microlensing data. The 30 FSPL events show a clear gap in Einstein radius, 9 𝜇as < 𝜃E < 26 𝜇as, which is consistent with the gap in Einstein timescales near tE ~ 0.5 days found by Mróz et al. (2017) in an independent sample of point-source/point-lens (PSPL) events. We demonstrate that the two surveys are consistent. We estimate that the 4 events below this gap are due to a power-law distribution of free-floating planet candidates (FFPs) dNFFP/d log M = (0.4 ± 0.2) (M/38 M)-p/star, with 0.9 ≲ p ≲ 1.2. There are substantially more FFPs than known bound planets, implying that the bound planet power-law index 𝛾 = 0.6 is likely shaped by the ejection process at least as much as by formation. The mass density per decade of FFPs in the Solar neighborhood is of the same order as that of 'Oumuamua-like objects. In particular, if we assume that 'Oumuamua is part of the same process that ejected the FFPs to very wide or unbound orbits, the power-law index is p = 0.89 ± 0.06. If the Solar System's endowment of Neptune-mass objects in Neptune-like orbits is typical, which is consistent with the results of Poleski et al. (2021), then these could account for a substantial fraction of the FFPs in the Neptune-mass range.

3D Histology Using the Synchrotron Radiation Propagation Phase Contrast Cryo-microCT (방사광 전파위상대조 동결미세단층촬영법을 활용한 3차원 조직학)

  • Kim, Ju-Heon;Han, Sung-Mi;Song, Hyun-Ouk;Seo, Youn-Kyung;Moon, Young-Suk;Kim, Hong-Tae
    • Anatomy & Biological Anthropology
    • /
    • v.31 no.4
    • /
    • pp.133-142
    • /
    • 2018
  • 3D histology is a imaging system for the 3D structural information of cells or tissues. The synchrotron radiation propagation phase contrast micro-CT has been used in 3D imaging methods. However, the simple phase contrast micro-CT did not give sufficient micro-structural information when the specimen contains soft elements, as is the case with many biomedical tissue samples. The purpose of this study is to develop a new technique to enhance the phase contrast effect for soft tissue imaging. Experiments were performed at the imaging beam lines of Pohang Accelerator Laboratory (PAL). The biomedical tissue samples under frozen state was mounted on a computer-controlled precision stage and rotated in $0.18^{\circ}$ increments through $180^{\circ}$. An X-ray shadow of a specimen was converted into a visual image on the surface of a CdWO4 scintillator that was magnified using a microscopic objective lens(X5 or X20) before being captured with a digital CCD camera. 3-dimensional volume images of the specimen were obtained by applying a filtered back-projection algorithm to the projection images using a software package OCTOPUS. Surface reconstruction and volume segmentation and rendering were performed were performed using Amira software. In this study, We found that synchrotron phase contrast imaging of frozen tissue samples has higher contrast power for soft tissue than that of non-frozen samples. In conclusion, synchrotron radiation propagation phase contrast cryo-microCT imaging offers a promising tool for non-destructive high resolution 3D histology.

Photoemission Electron Micro-spectroscopic Study of the Conductive Layer of a CVD Diamond (001)$2{\times}1$ Surface

  • Kono, S.;Saitou, T.;Kawata, H.;Goto, T.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.7-8
    • /
    • 2010
  • The surface conductive layer (SCL) of chemical vapor deposition (CVD) diamonds has attracting much interest. However, neither photoemission electron microscopic (PEEM) nor micro-spectroscopic (PEEMS) information is available so far. Since SCL retains in an ultra-high vacuum (UHV) condition, PEEM or PEEMS study will give an insight of SCL, which is the subject of the present study. The sample was made on a Ib-type HTHP diamond (001) substrate by non-doping CVD growthin a DC-plasma deposition chamber. The SCL properties of the sample in air were; a few tens K/Sq. in sheet resistance, ${\sim}180\;cm^2/vs$ in Hall mobility, ${\sim}2{\times}10^{12}/cm^2$ in carrier concentration. The root-square-mean surface roughness (Rq) of the sample was ~0.2nm as checked by AFM. A $2{\times}1$ LEED pattern and a sheet resistance of several hundreds K/Sq. in UHV were checked in a UHV chamber with an in-situ resist-meter [1]. The sample was then installed in a commercial PEEM/S apparatus (Omicron FOCUS IS-PEEM) which was composed of electro-static-lens optics together with an electron energy-analyzer. The presence of SCL was regularly monitored by measuring resistance between two electrodes (colloidal graphite) pasted on the two ends of sample surface. Figure 1 shows two PEEM images of a same area of the sample; a) is excited with a Hg-lamp and b) with a Xe-lamp. The maximum photon energy of the Hg-lamp is ~4.9 eV which is smaller that the band gap energy ($E_G=5.5\;eV$) of diamond and the maximum photon energy of the Xe-lamp is ~6.2 eV which is larger than $E_G$. The image that appear with the Hg-lamp can be due to photo-excitation to unoccupied states of the hydrogen-terminated negative electron affinity (NEA) diamond surface [2]. Secondary electron energy distribution of the white background of Figs.1a) and b) indeed shows that the whole surface is NEA except a large black dot on the upper center. However, Figs.1a) and 1b) show several features that are qualitatively different from each other. Some of the differences are the followings: the two main dark lines A and B in Fig.1b) are not at all obvious and the white lines B and C in Fig.1b) appear to be dark lines in Fig.1a). A PEEMS analysis of secondary electron energy distribution showed that all of the features A-D have negative electron affinity with marginal differences among them. These differences can be attributed to differences in the details of energy band bending underneath the surface present in SCL [3].

  • PDF

Pressure Drop and Catalytic Dehydrogenation of NaBH4 Solution Across Pin Fin Structures in a Microchannel Reactor (마이크로 Pin Fin 화학반응기에서 수소화붕소나트륨 수용액의 압력강하 및 탈수소 화학반응 연구)

  • Jung, Ki Moon;Choi, Seok Hyun;Lee, Hee Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.381-387
    • /
    • 2017
  • Dehydrogenation from the hydrolysis of a sodium borohydride ($NaBH_4$) solution has been of interest owing to its high theoretical hydrogen storage capacity (10.8 wt.%) and potentially safe operation. An experimental study has been performed on the catalytic reaction rate and pressure drop of a $NaBH_4$ solution over both a single microchannel with a hydraulic diameter of $300{\mu}m$ and a staggered array of micro pin fins in the microchannel with hydraulic diameter of $50{\mu}m$. The catalytic reaction rates and pressure drops were obtained under Reynolds numbers from 1 to 60 and solution concentrations from 5 to 20 wt.%. Moreover, reacting flows were visualized using a high-speed camera with a macro zoom lens. As a result, both the amount of hydrogenation and pressure drop are 2.45 times and 1.5 times larger in a pin fin microchannel array than in a single microchannel, respectively.

Development of Digital 3D Real Object Duplication System and Process Technology (디지털 3차원 실물복제기 시스템 및 공정기술 개발)

  • Kim D.S.;An Y.J.;Lee W.H.;Choi B.O.;Chang M.H.;Baek Y.J.;Choi K.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.732-737
    • /
    • 2005
  • Distal 3D Real Object Duplication System(RODS) consists of 3D Scanner and Solid Freeform Fabrication System(SFFS). It is a device to make three-dimensional objects directly from the drawing or the scanning data. In this research, we developed an office type SFFS based on Three Dimensional Printing Process and a industrial SFFS using Dual Laser. An office type SFFS applied sliding mode control with sliding perturbation observer(SMCSPO) algorithm for control of this system. And we measured process variables about droplet diameter measurement and powder bed formation etc. through experiments. Also, in order to develop more elaborate and speedy system for large objects than existing SLS process, this study applies a new Selective Multi-Laser Sintering(SMLS) process and 3-axis dynamic Focusing Scanner for scanning large area instead of the existing $f\theta$ lens. In this process, the temperature has a great influence on sintering of the polymer. Also the laser parameters are considered like that laser beam power, scan speed, scan spacing. Now, this study is in progress to eveluate the effect of experimental parameters on the sintering process.

  • PDF

The Evolution of Korean e-Government Service in the Perspective of Actor-Network Theory (한국 전자정부시스템 발전에 있어서 행정 표준의 역할과 관리체제의 변화 연구)

  • Kim, Sulim;Yang, Hee-Dong;Ahn, Joongho
    • Journal of Technology Innovation
    • /
    • v.23 no.3
    • /
    • pp.21-42
    • /
    • 2015
  • This paper shows the case of the evolution of Korean e-Government services in the theoretical lens of Actor-Network Theory and Structuration Theory. It presents how human actors (i.e. presidents and the central administrations) and non-human actors (i.e. law, standards, and relay systems) have established as the one network together, and how this network affects the evolution of Korean e-Government services. This case demonstrates in public sector can adopt not only Actor-Network Theory, but also Structuration Theory to explain both micro and macro contexts. The practical implications are given especially for the developing countries in pursuing the rapid development process of e-Government services.

Application of DMD for Phase Shifting in Moire Topology (DMD를 이용한 위상천이 모아레 3차원 형상 측정)

  • Jeong, Kyung-Seok;Jung, Yong-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2457-2462
    • /
    • 2011
  • The need for rapid and accurate measurement of 3-dimensional objects is increasing due to the paradigmatic shift in manufacturing from mass production to small batch production. A three dimensional measurement technique which can provide the dimensional information of the object manufactured or to be manufactured has been developed. This method is based on phase shifting moire topology. Digital-Micromirror-Device (DMD) has been used in generating phase shifting moire fringes. And the mechanically moving optical components used for phase shifting, which might result in measurement errors, have been replaced by the DMD. Inherent $2\pi$-ambiguity problem, occurring in the calculation of phase from the light intensity distribution due to the nature of arctangent function, has been overcome by adapting the phase unwrapping method. The advantage of this technique is the easy change of the range and the resolution of the measurement by simply changing the computer generated grid pattern with the appropriate combination of projection lens of various focal length.

Nucleation and growth mechanism of nitride films deposited on glass by unbalanced magnetron sputtering

  • Jung, Min J.;Nam, Kyung H.;Han, Jeon G.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.06a
    • /
    • pp.14-14
    • /
    • 2001
  • Nitride films such as TiN, CrN etc. deposited on glass by PVD processes have been developed for many industrial applications. These nitride films deposited on glass were widely used for not only decorative and optical coatings but also wear and corrosion resistance coatings employed as dies and molds made of glass for the example of lens forming molds. However, the major problem of nitride coatings on glass by PVD process is non-uniform film owing to pin-hole and micro crack. It is estimated that nonuniform coating is influenced by a different surface energy between metal nitrides and glass due to binding states. In this work, therefore, for the evaluation of nucleation and growth mechanism of nitride films on glass TiN and CrN film were synthesized on glass with various nitrogen partial pressure by unbalanced magnetron sputtering. Prior to deposition, for the examination of relationship between surface energy and film microstructure plasma pre-treatment process was carried out with various argon to hydrogen flow rate and substrate bias voltage, duty cycle and frequency by using pulsed DC power supply. Surface energy owing to the different plasma pre-treatment was calculated by the measurement of wetting angle and surface conditions of glass were investigated by X-ray Photoelectron Spectroscopy(XPS) and Atomic Force Microscope(AFM). The microstructure change of nitride films on glass with increase of film thickness were analyzed by X-Ray Diffraction(XRD) and Scanning Electron Microscopy(SEM).

  • PDF

Surgical Anatomy of Lateral Extracavitary Approach to the Thoracolumar Spine - Cadaveric Study - (흉요추부 외측 강외 접근법(Lateral Extracavitary Approach)의 수술해부학적 구조 - 사체해부실험 -)

  • Kim, Sang-Don;Suh, Jung-Keun;Ha, Sung-Kon;Kim, Joo-Han;Cho, Tae-Hyung;Park, Jung-Yul;Kim, Hyun
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.10
    • /
    • pp.1187-1192
    • /
    • 2001
  • Objective : The lateral extracavitary approach(LECA) to the thoracolumbar spine is known as one of procedure which allows not only direct vision of pathologic lesion, but also ventral decompression, and dorsal fixation of the spine through the same incision. However, some drawbacks of LECA, including the technically- demanding, time-consuming, unfamiliar surgical anatomy and excessive blood loss, make surgeons to hesitate to use this approach. This study is to provide the surgical anatomy of LECA using cadavers, for detailed informations when LECA is considered for the surgery. Methods : We performed the 10 cadaveric studies, 7 male and 3 female, and careful dissection was carried out on right side of thoracolumbar region, except one for thoracic region. The photographs with micro-lens were taken to depict the close-up findings and for demonstrating detailed anatomy. Results : The photographs and hand-drawings demonstrated the relationships among the musculature, segmental vessels and nerve roots seen during each dissection plane. The lateral branches of dorsal rami of spinal nerve and the transverse process were confirmed to be the most important landmark of this approach. Conclusion : We concluded that detailed anatomical findings for LECA through this step-by-step dissection would be useful during operative intervention to reduce the intraoperative complications in LECA.

  • PDF

A Study on the Flying Stability of Optical Flying Head on the Plastic Disks (플라스틱 디스크상의 부상형 광헤드의 부상안정성에 관한 연구)

  • Kim, Soo-Kyung;Yoon, Sang-Joon;Choi, Dong-Hoon;Lee, Seung-Yop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.399-402
    • /
    • 2004
  • In the optical drive system, adopting the optical flying-type head (OFH) flying on a removable plastic disk, the flying stability of the small OFH should be carefully considered to ensure the reliability for first surface recording. Additional micro actuators for focus servo are discussed for better interface of optical flying head on thin cover layered plastic disk to eliminate focus error due to the non-uniformity of cover layer thickness and the tolerance of lens assembly. This study gives two simulation results on the flying stability of the OFH. One is the dependence of the flying height and pitch angle variations on the wavelength and amplitude of disk waviness. The other is the flying stability of the slider and suspension system during the dynamic load/unload (U/UL) process.

  • PDF