• Title/Summary/Keyword: Micro channel-mixer

Search Result 29, Processing Time 0.03 seconds

Numerical Analysis on Mixing Efficiency in a Micro-channel with Varied Geometry (미소 채널의 형상변화에 의한 혼합효율에 관한 수치 해석적 연구)

  • Yoon, Joon-Yong;Han, Gyu-suk;Byun, Sung-Joon
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.275-281
    • /
    • 2005
  • In this work, Scalar Passive code in Lattice Boltzmann Method was employed to simulate mixing performance of Passive mixer in a micro-channel. It physically analyzed stream line and Pressure drop for passive mixer in a micro-channel. The flow characteristics in a micro-channel was a function of Peclet number. The results indicated that the size of static element was more effect on the mixing than the number of static element and the distance of static elements.

Approximate Optimization of an Active Micro-Mixer (능동형 미소혼합기의 근사최적화)

  • Park, Jae-Yong;Kim, Sang-Rak;Yoo, Jin-Sik;Lim, Min-Gyu;Kim, Young-Dae;Han, Seog-Young;Maeng, Joo-Seung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.95-100
    • /
    • 2008
  • An active micro-mixer, which is composed of an oscillating micro-stirrer in the micro-channel to provide effective mixing was optimized. The effects of molecular diffusion and disturbance by the stirrer were considered with regard to two types of mixer models: the simple straight micro-channel and micro-channel with an oscillating stirrer. Two types of mixer models were studied by analyzing mixing behaviors such as their interaction after the stirrer. The mixing was calculated by Lattice Boltzmann methods using the D2Q9 model. In this study, the time-averaged mixing index formula was used to estimate the mixing performance of time-dependent flow. The mixing indices of the two models were compared. From the results, it was found that the mixer with an oscillating stirrer was much more enhanced and stabilized. Therefore, an approximate optimization of an active micro-mixer with an oscillating stirrer was performed using Kriging method with OLHD(Optimal Latin Hypercube Design) in order to determine the optimal design variables. The design parameters were established as the frequency, the length and the angle of the stirrer. The optimal values were obtained as 1.0346, 0.66D and $\pm45^{\circ}$, respectively. It was found that the mixing index of the optimal design increased by 88.72% compared with that of the original design.

Optimization of Passive Mixer for Enhanced Mixing in a Micro-channel by Using Lattice Bloltzmann Method (격자 볼츠만 방법을 이용한 미소 채널에서의 혼합효율 증가를 위한 수동형 믹서의 최적화)

  • Han Gyu suk;Byun Sung Joon;Yoon Joon Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.707-715
    • /
    • 2005
  • In this work, Scalar Passive code in Lattice Boltzmann Method is employed to simulate two-phase flow of low Reynolds number in a micro-channel. The mixing characteristics in a micro-channel is a function of Peclet number. The mixing length increases with the Peclet number. It is found that with the inclusion of static elements at the channel, rapid mixing of two liquids can be achieved, as shown by the results of computer simulations. The enhancement in mixing performance is thought to be caused by the generation of eddies and by lateral velocity component when the mixture flows past static elements. The results indicate that the size of static element has more effect on the mixing than the number of static element.

Effect of Various Shapes of Mixer Geometry on Two-Phase Flow Patterns in a Micro-Channel (마이크로 채널 내 혼합부 형상이 2상 유동 양식에 미치는 영향에 대한 연구)

  • Lee, Kwan Geun;Lee, Jun Kyoung;Park, Taehyun;Kim, Gyo Nam;Park, Eun Ju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.2
    • /
    • pp.75-80
    • /
    • 2015
  • The effect of inlet mixer geometries on the two-phase flow patterns in square micro-channel with $600{\times}600{\mu}m$ was investigated experimentally in this paper. The 4 different mixer configurations based on the Y, Impacting, and two T types (gas and liquid inlets were switched) were used. The test fluids were nitrogen and water. The liquid and gas superficial velocities were 0.01~10 m/s and 0.1~100 m/s, respectively. Several distinctive flow patterns, namely, annular, slug-annular, slug, slug-bubbly, bubbly, and churn flow could be seen. The flow pattern maps for each mixer were suggested, and it can be concluded that two-phase flow patterns are not very sensitive to the mixer geometries. But the mixing behaviors of gas and liquid for each mixer were different for slug and bubbly flow. Thus, the characteristics of slug and bubble for each case were not same.

A Micro Mixer with Recirculation Zones (재순환 영역이 존재하는 마이크로 혼합기)

  • Lee, Jong-Kwang;Kim, Young-Dae;Choe, Jae-Hoon;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1642-1648
    • /
    • 2006
  • This paper describes enhancement of the mixing efficiency of a multilamination micro mixer by adding a number of recirculation zones downstream of the mixing zone. Numerical simulation was employed to estimate the mixing efficiency and the pressure drop under various conditions. Numerical results indicated that recirculation micro mixer brought about not only the increase of the mixing efficiency but also the decrease of the pressure drop. Micro mixers were fabricated using photosensitive glass by anisotropic wet etching technique. The width and height of the micro channel were $150{\mu}m$ and $500{\mu}m$, respectively. The performance of micro mixer was measured using color intensity variation of the fluid. Except for extremely low Re below 40, the recirculation micro mixer of the present study showed improved mixing. And the enhancement of the mixing increased as Re rose. When Re increased beyond 400, more than 90% of the mixing was observed in the experiment.

Study on mixing characteristics of T-type micro channel (미소 T 채널의 혼합 특성에 관한 연구)

  • Lee, Sang-Hyun;Ahn, Cheol-O;Seo, In-Soo;Lee, Sang-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2495-2500
    • /
    • 2008
  • We simulated the mixing characteristics in micro T-channel using Lattice Boltzmann Method. We studied the relation a mixing length and pressure-drop due to inlet and outlet ration in Reynolds number 0.5, Peclet number 500 and Schmidt 1000. The ratio of a down-inlet to up-inlet was $0.5{\sim}1.5$ times, up-inlet to outlet was $1{\sim}3$ times and outlet length was 250 times to up-inlet. The mixing length decrease linearly as outlet ratio decreased, and pressure-drip increase non-linearly. Initial stage of micro channel mixture was fast by down-inlet ratio, however, the mixing length is not influence.

  • PDF

Analysis of Mining Performance and Flow Measurement Inside a Micro Mixer (마이크로 혼합기 내의 유동 계측 및 혼합 특성 해석)

  • Sung Jaey-ong;Lee In-won;Kim Byoung-Gyun;Yoon Eui-sik;Lee In-Seop
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.45-48
    • /
    • 2002
  • To investigate the flow related to the mixing, micro PIV measurements were performed in the middle plane of the channel. A passive micro mixer analyzed in this work has been designed in the shape of a three-dimensional microchannel and fabricated with PDMS molding process by KAIST. The mixing performance was evaluated for different flow rates using phenolphthalein and sodium hydroxide solutions. Results show that mixing is enhanced by the increase of flow rate, which yields stronger secondary flows with helical streamlines.

  • PDF

Evaluation of Mixing Performance in Several Designs for Microfluidic Channel Mixers

  • Wang, Yang-Yang;Suh, Yong-Kweon;Kang, Sang-Mo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2811-2816
    • /
    • 2007
  • We conducted a numerical study of AC-electroosmotic (alternating current) effect on the fluid flow and mixing in a 3-D microchannel. The microchannel used as an efficient micro-mixer is composed of a channel and a series of pairs of electrodes attached in zigzag pattern on the bottom wall. The AC electric field is applied to the electrodes so that a steady flow current takes place around the electrodes. This current is flowing across the channel and thus contributing to the mixing of the fluid within the channel. We performed numerical simulations by using a commercial code to obtain a steady flow field. This steady flow is then used in evaluation of the mixing performance via the concept of mixing index. It was found that good combination of two kinds of electrode, which gave us a good mixing, is not simple harmonic. And when the length ratio of these two kinds of electrode is 2:1, we can get the best mixing effect.

  • PDF