• Title/Summary/Keyword: Micro Water Droplet

Search Result 58, Processing Time 0.018 seconds

Roll-to-Roll (R2R) Fabrication of Micro Pillar Array for Biomimetic Functionalization of Surface

  • Jeon, Deok-Jin;Lee, Jun-Young;Yeo, Jong-Souk
    • Applied Science and Convergence Technology
    • /
    • v.23 no.1
    • /
    • pp.54-59
    • /
    • 2014
  • The roll-to-roll (R2R) fabrication method to make micro-scale pillar arrays for biomimetic functionalization of surfaces is presented. Inspired by the micro-structure of plants in nature, a surface with a synthetic micro-scale pillar array is fabricated via maskless photolithography. After the surface is SAM (self-assembled monolayer) coated with trichlorosilane in a vacuum desiccator, it displays a hydrophobic property even in R2R replicas of original substrate, whose properties are further characterized using various pitches and diameters. In order to perform a comparison between the original micro-pattern and its replicas, surface morphology was analyzed using scanning electron microscopy and wetting characteristics were measured via a contact angle measurement tool with a $10{\mu}L$ water droplet. Efficient roll-to-roll imprinting for a biomimetic functionalized surface has the potential for use in many fields ranging from water repelling and self-cleaning to microfluidic chips.

Effects of Micro-fin Structure on Spray Cooling Heat Transfer in Forced Convection and Nucleate Boiling Region (강제대류 및 핵비등영역에 있어서 마이크로 휜 형상이 분무냉각 열전달에 미치는 영향)

  • Kim, Yeung-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.11
    • /
    • pp.983-990
    • /
    • 2010
  • In the present study, spray cooling heat transfer was experimentally investigated for the case in which water is sprayed onto the surfaces of micro-fins in forced convection and nucleate boiling regions. The experimental results show that an increase in the droplet flow rate improves heat transfer due to forced convection and nucleate boiling in the both case of smooth surface and surfaces of micro-fins. However, the effect of subcooling for fixed droplet flow rate is very weak. Micro-fins surfaces enhance the spray cooling heat transfer significantly. In the dilute spray region, the micro-fin structure has a significant effect on the spray cooling heat transfer. However, this effect is weak in the dense spray region. A previously determined correlation between the Nusselt number and Reynolds number shows good agreement with the present experimental data for a smooth surface.

Experimental Study of Dynamic Behavior of a Water Droplet on Diverse Wrinkling Surfaces (마이크로 표면주름 구조에 따른 물방울 동적거동에 관한 실험적 연구)

  • Baek, Dae Hyeon;Zhao, Zhijun;Park, Sang-Hu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.6
    • /
    • pp.577-585
    • /
    • 2015
  • We fabricated multi-scale such as macro-, micro-, and multi-scale wrinkles by using repetitive volume dividing (RVD) method and thermal curing process. Also wrinkle surface was modified with coating of a self-assembled monolayer (SAM). We measured the contact angle of each wrinkled surface, and observed the behavior of droplets on sloping surface. Through experimental study, we found out that the contact angle was much higher in case of multi-scale and SAM coated wrinkles. And micro-scale wrinkle showed a high contact angle comparing with that of macro-scale wrinkle. Dynamic behaviors of a water droplet like sliding velocity on diverse wrinkled surfaces were dependent on their static contact angles. These results showed that hydro-dynamic characteristics were changed depending on the wrinkle structure and the material forming the wrinkle. These dynamic characteristics can be utilized in bio-chip, microfluidics, and many others in order to control easily chemical reactivity.

Spreading and retraction dynamics of a liquid droplet impacting rough hydrophobic surfaces: Formation of micrometer-sized drops (거친 발수 표면에 충돌하는 유체 방울의 팽창 및 수축 역학: 미세 유체 방울의 형성)

  • Kim, Uijin;Kim, Jeong-Hyun
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.15-21
    • /
    • 2021
  • In this study, we investigated the dynamics of a droplet impacting rough hydrophobic surfaces through high-speed imaging. Micrometer-sized structures with grooves and pillars were fabricated on smooth Polydimethylsiloxane (PDMS) surfaces by laser ablation. We used Newtonian and non-Newtonian liquid droplets to study the drop impact dynamics. De-ionized water and aqueous glycerin solutions were used for the Newtonian liquid droplet. The solutions of xanthan gum in water were prepared to provide elastic property to the Newtonian droplet. We found that the orientation of the surface structures affected the maximal spreading diameter of the droplet due to the degree of slippage. During the droplet retraction, the dynamic receding contact angles were measured to be around 90° or less. It resulted in the formation of the micro-capillary bridges between the receding droplet and the surface structures. Then, the rupture of the capillary bridge led to the formation of micrometer-sized droplets on top of the surface structures. The size of the microdroplets was found to increase with increasing the impacting velocity and viscosity of the Newtonian liquid droplets. However, the size of the isolated microdroplets decreased with enhancing the elasticity of the droplets, and the size of the non-Newtonian microdroplets was not affected by the impacting velocity.

Interfacial Behavior of Water Droplet on Micro-Nano Structured Surfaces (마이크로-나노 구조가 있는 표면에서의 액적 계면 거동 현상에 대한 연구)

  • Kwak, Ho Jae;Yu, Dong In;Kim, Moo Hwan;Park, Hyun Sun;Moriyama, Kiyofumi;Ahn, Ho Sun;Kim, Dong Eok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.449-453
    • /
    • 2015
  • Recently, surfaces with micro and nano structures are the focus of various research and engineering fields to enhance wetting characteristics of the surfaces. Hydrophilic surfaces with hierarchical structures are generally characterized by the interfacial behavior of water droplets. In this study, the interfacial behavior of water droplets is experimentally investigated considering the scale of structures. Using the dry etching and conventional lithography method, quantitative hierarchical structured surfaces are developed. The behavior of the liquid-vapor interface on the test sections is visualized using an automatic goniometer and a high-speed camera. On the basis of the visualized data, the interfacial behavior of water droplets is intensively investigated according to surface geometrical characteristics.

Effect of Diffusion on the Interfacial Adhesion of Poly(hydroxy ether) Coated Caron Fibers (계면확산에 의한 Poly(hydroxy ether) 코팅된 탄소섬유의 계면접착력 변화 연구)

  • 강현민;윤태호
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.15-21
    • /
    • 1999
  • Carbon fibers were coated with carboxy modified poly(hydroxy ether)(C-PHE, water dispersed), water soluble polymers poly(hydroxy ether ethanol amine)(PHEA) or water insoluble poly(hydroxy ether)(PHE). Interfacial shear strength of polymer coated carbon fibers was measured by micro-droplet tests with vinyl ester resin, and approximately 30 samples were tested. The interfacial adhesion of poly-mers to carbon fibers was also evaluated, and diffusion behavior of polymer films in vinyl ester resin was investigated. The carbon fibers after testing and diffusion samples were analysed by SEM in order to understand adhesion mechanism. Interfacial shear strength of carbon fibers was enhanced by the coating of PHE and C-PHE which have good or marginal solubility in vinyl ester resin, respectively, but not by the coating of PHEA possibly due to the poor solubility in vinyl ester resin.

  • PDF

Experimental study of spreading phenomena on hydrophilic micro-textured surfaces depending on surface geometrical features (친수성 마이크로 기둥 구조 표면에서의 표면 지형적 특성에 따른 퍼짐성 현상에 대한 실험적 연구)

  • Jang, Munyoung;Park, Sehyeon;Yu, Dong In
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.3
    • /
    • pp.35-39
    • /
    • 2018
  • In multiphase systems, surface wettability is one of dominant design parameters to enhance system performance. Since surface wettability can be maximized and minimized with micro-textured surfaces, therefore micro-textured surfaces are widely countered in various research and engineering fields. In this study, for better understanding of micrometer scaled surface wettability, spreading phenomena is experimentally investigated on the hydrophilic micro-textured surfaces. By photolithography and conventional dry etching method, there are prepared the surfaces with uniformly arrayed micro-pillars. The interfacial motions of a water droplet on the test sections are visualized by high speed camera in top view. On the basis of visualization data, it is analyzed the relation between dynamic coefficient and geometrical features on micro-textured surfaces.

Investigation of Liquid Droplet Impingement Erosion Corrosion based on the Flow Rate of Anodized 5083-H321 Al Alloy in Seawater (경질양극산화된 5083-H321 알루미늄 합금의 해수 내 액적충격침식부식 손상 연구)

  • Shin, Dong-Ho;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.310-317
    • /
    • 2020
  • This study investigated the damage to the specimen due to liquid droplet impingement erosion corrosion, which improved the corrosion resistance and durability via hard anodization of 5083-H321 aluminum alloy, which is widely used for small ships and marine structures. The experiment combined liquid droplet impingement erosion and electrochemical equipment with the flow rates in natural seawater solution. Subsequently, Tafel extrapolation of polarization curves was performed to evaluate damage due to the liquid droplet impingement erosion corrosion. The damaged surface was observed using a 3D microscope and a scanning electron microscope. The degree of pitting damage was measured using the Image J program, and the surface hardness was measured using the micro-Vickers hardness tester. The corrosion current density, area, depth, and ratio of the damaged areas increased with the increase in flow rate. The grain size of the damaged area at a flow rate of 20 m s-1 showed fewer and minor differences in height, and a smooth curved shape. The hardness of the damaged surface tended to decrease with increase in flow rate.

Characteristic Analysis of Electrowetting on Dielectric Layer (절연층에 따른 액적의 전기습윤 특성 분석)

  • Choi, Jin Ho;Kim, Gyu man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.38-43
    • /
    • 2019
  • Electrowetting on dielectric (EWOD) is a unique method of shape control of small-volume droplets in microfluidic biochips that relies on modification of surface wetting characteristics using electrical methods. In this study, the droplet shape control on various dielectric surfaces by the EWOD and the effect of droplets on the contact angle as well as the shape were investigated. The droplet used in the experiment was on a sample substrate with $5{\mu}l$ of de-ionized water (DIW) using a micropipette, and wettability was measured with a contact angle meter. This study is expected to be helpful for the development of various micro-total-analysis-systems (${\mu}TAS$) and microfluidic systems with MEMS technology.

Micro Energy Harvesting System Based On Reverse Electro Wetting On Dielectric (REWOD) (역전기습윤현상을 이용한 소형 에너지 수확장치)

  • Cho, Jin Hyun;Kim, Gil Yeon;Choi, Sang Beak;Jeon, Tae-joon;Kim, Sun Min
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.27-30
    • /
    • 2015
  • In this study, we attempted to harvest energy using water droplet based on Reverse Electro Wetting On Dielectric (REWOD) phenomenon between water droplet and dielectric surface without external bias. REWOD device can be fabricated via simple coating process, which is highly economic and easy. We believe that our system is well-suited for IoT(Internet of Things) embedded electronics that require low but consistent electricity. Moreover, our device can be integrated with window to generate electricity upon raindrops.