• Title/Summary/Keyword: Micro Powder

Search Result 473, Processing Time 0.034 seconds

A Study on the Korean Red Ginseng Packaging (홍삼의 패키지 현황과 디자인 개선 방안)

  • 김미자
    • Archives of design research
    • /
    • v.17 no.2
    • /
    • pp.373-382
    • /
    • 2004
  • The value of Korean ginseng has been known in the world since the 4th century B. C. Red ginseng is hot-steamed, and then dried for the purpose of long-term storing. Through the steaming and drying process, its moisture rate is reduced to 14% and its color becomes citrine or light yellowish brown. Its hardened structure enables long-term storage without any deformation. Especially, Korean red ginseng contains substances that promote micro-physiological activities which are not found in American or Sanchi ginseng. Ginseng is produced in diverse forms for the customer's convenience. In this study, these are classified as sliced, dried, and honeyed ginseng, granulated tea, extract, powder, capsules, tablets, drinks and candy. Package design is one of the most effective method in the marketing fields. However, in this research, we found that red ginseng packages are not variously and properly developed in materials and designs. The research pointed out the problems and discuss ways and means of the package design.

  • PDF

Experimental Study on Cement Cohesion Reduction Effect of Grout Mixer with Vibration Filter (진동필터가 설치된 그라우트 믹서의 시멘트 응집 저감 효과에 대한 실험적 연구)

  • Hwang, Sung-Pil;Jeoung, Jae-Hyeung;Kim, Chang-Yong;Lee, Woo-Je
    • The Journal of Engineering Geology
    • /
    • v.28 no.1
    • /
    • pp.61-67
    • /
    • 2018
  • Grouting is reinforcement or cutoff method which uses the hardening agent which is typically represented by portland cement and injected into the ground or the structure. When mixing the cement in powder form with water, the particles tend to cohere each other. Once they cohered, the particle size tends to become larger while injection efficiency becomes lower. This study, in a bid to reduce the cohesion of cement, the screen was set inside the grout mixer so that the cement particles are separated while vibrating them. To validate the effect of vibration screen, comparison test was conducted by using ordinary portland cement, slag cement and micro cement. Viscosity test, bleeding test and grain-size analysis indicated that the characteristics varied significantly after passing through the vibration filter. It is expected that the vibration filter installed inside the grout mixer will reduce the cement cohesion when mixing with water.

Development of Digital 3D Real Object Duplication System and Process Technology (디지털 3차원 실물복제기 시스템 및 공정기술 개발)

  • Kim D.S.;An Y.J.;Lee W.H.;Choi B.O.;Chang M.H.;Baek Y.J.;Choi K.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.732-737
    • /
    • 2005
  • Distal 3D Real Object Duplication System(RODS) consists of 3D Scanner and Solid Freeform Fabrication System(SFFS). It is a device to make three-dimensional objects directly from the drawing or the scanning data. In this research, we developed an office type SFFS based on Three Dimensional Printing Process and a industrial SFFS using Dual Laser. An office type SFFS applied sliding mode control with sliding perturbation observer(SMCSPO) algorithm for control of this system. And we measured process variables about droplet diameter measurement and powder bed formation etc. through experiments. Also, in order to develop more elaborate and speedy system for large objects than existing SLS process, this study applies a new Selective Multi-Laser Sintering(SMLS) process and 3-axis dynamic Focusing Scanner for scanning large area instead of the existing $f\theta$ lens. In this process, the temperature has a great influence on sintering of the polymer. Also the laser parameters are considered like that laser beam power, scan speed, scan spacing. Now, this study is in progress to eveluate the effect of experimental parameters on the sintering process.

  • PDF

Application of Dairy Food Processing Technology Supplemented with Enriched-nutrients for the Elderly: II. The Applicable Technology of Carefoods for the Elderly (고령자를 위한 영양강화 유제품 개발 II. 고령자 영양강화 적용 기술 현황)

  • Kim, Bum Keun;Jang, Hae Won;Choi, Ga Hee;Moon, Yong-Il;Oh, Sejong;Park, Dong June
    • Journal of Dairy Science and Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.213-222
    • /
    • 2019
  • Milk and dairy products are the high value foods for the elderly population. In particular, fermented milk is the best source of calcium for people in the specific age group of over 79 years. It provides a good source of protein. Regular exercise and active lifestyle are recommended to slow down the muscle loss. However, exercising without proper nutrient intake is simply not sufficient at this age. Milk and dairy products provide the iron and protein content required for effective exercise-assisted growth. Milk nutrients have the advantage of being produced in various food forms, such as liquid, semi-solid, and powder types. Fat-soluble vitamins such as retinol and vitamin K can be encapsulated using various technologies for milk and dairy products. Using the encapsulation method, spray drying and fluidized-bed coating have been used for adding the micro-nutrients to the food. Microencapsulation technology is being applied in case of the fermented dairy products too. In particular, various wall materials are being developed to enhance the viability of probiotics. In the near future, advanced high-efficiency technologies that can effectively nourish the dairy products with nutrients will be developed to produce targeted high-nutrition value food for the elderly.

Effect of Groove Shapes on Mechanical Properties of STS316L Repaired by Direct Energy Deposition (직접 에너지 적층을 통한 STS316L 소재의 보수 공정에서 그루브 형상이 기계적 특성에 미치는 효과)

  • Oh, W.J.;Son, Y.;Son, J.Y.;Shin, G.W.;Shim, D.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.2
    • /
    • pp.103-112
    • /
    • 2020
  • This study explores the effects of different pre-machining conditions on the deposition characteristics and mechanical properties of austenitic stainless steel samples repaired using direct energy deposition (DED). In the DED repair process, defects such as pores and cracks can occur at the interface between the substrate and deposited material. In this study, we varied the shape of the pre-machined zone for repair in order to prevent cracks from occurring at the slope surface. After repairs by the DED process, macro-scale cracks were observed in samples that had been pre-machined with elliptic and trapezoidal grooves. In addition, it was not possible to completely prevent micro-crack generation on the sloped interfaces, even in the capsule-type grooved sample. From observation of the fracture surfaces, it was found that the cracks around the inclined interface were due to a lack of fusion between the substrate and the powder material, which led to low tensile properties. The specimen with the capsule-type groove provided the highest tensile strength and elongation (respective of 46% and 571% compared to the trapezoidal grooved specimen). However, the tensile properties were degraded compared to the non-repaired specimen (as-hot rolled material). The fracture characteristics of the repaired specimens were determined by the cracks at the sloped interfaces. These cracks grew and coalesced with each other to form macro-cracks, they then coalesced with other cracks and propagated to the substrate, causing final fracture.

Mechanical Properties of Bulk Ti3SiC2 Synthesized by a Hot Press Sintering (가압 소결법으로 합성된 Ti3SiC2 소결체의 기계적 특성)

  • Cho, Gyoung-Sun;Hwang, Sung-Sic;Kwon, Huck-Bo;Park, Sang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.560-565
    • /
    • 2010
  • Nano laminated bulk $Ti_3SiC_2$ was synthesized by hot press process using TiCx/Si powder mixture at the temperature range of $1300^{\circ}C\sim1500^{\circ}C$. pure $Ti_3SiC_2$ was synthesized by a hot pressing above $1400^{\circ}C$, while unreacted TiCx were remained in bulk $Ti_3SiC_2$ which synthesized below $1400^{\circ}C$. The sintering density of bulk $Ti_3SiC_2$ were varied with the amount of TiCx. It was found that the mechanical properties and micro structures of bulk $Ti_3SiC_2$ were closely related to the amounts of TiCx which was controlled by the hot pressing temperature. The TiCx increase the flexural strength of bulk $Ti_3SiC_2$, while the fracture toughness and thermal shock resistance of bulk $Ti_3SiC_2$ were decreased with the content of TiCx. The plastic deformations of bulk $Ti_3SiC_2$ were appeared above $1000^{\circ}C$.

Hardness and EDM Processing of MoSi$_2$Intermetallics for High Temperature Ship Engine (고온선박엔진용 MoSi$_2$금속간화합물의 경도와 방전가공특성)

  • 윤한기;이상필
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.60-64
    • /
    • 2002
  • This paper describes the machining characteristics of the MoSi$_2$--based composites through the process of electric discharge drilling with various tubular electrodes. In addition to hardness characteristics, microstructures of Nb/MoSi$_2$laminate composites were evaluated from the variation of fabricating conditions, such as preparation temperature, applied pressure, and pressure holding time. MoSi$_2$-based composites have been developed in new materials for jet engines of supersonic-speed airplanes and gas turbines for high-temperature generators. These high performance engines may require new hard materials with high strength and high temperature-resistance. Also, with the exception of grinding, traditional machining methods are not applicable to these new materials. Electric discharge machining (EDM) is a thermal process that utilizes a spark discharge to melt a conductive material. The tool electrode is almost -unloaded, because there is n direct contact between the tool electrode and the work piece. By combining a non-conducting ceramic with more conducting ceramic, it was possible to raise the electrical conductivity. From experimental results, it was found that the lamination from Nb sheet and MoSi$_2$ powder was an excellent strategy to improve hardness characteristics of monolithic MoSi$_2$. However, interfacial reaction products, like (Nb, Mo)SiO$_2$and Nb$_2$Si$_3$formed at the interface of Nb/MoSi$_2$, and increased with fabricating temperature. MoSi$_2$composites, with which a hole drilling was not possible through the conventional machining process, enhanced the capacity of ED-drilling by adding MbSi$_2$, relative to that of SiC or ZrO$_2$reinforcements.

Fabrication of Alloy Target for Formation of Ti-Al-Si-N Composite Thin Film and Their Mechanical Properties (Ti-Al-Si-N 박막 제작을 위한 합금 타겟 제조 및 박막의 기계적 특성)

  • Lee, Han-Chan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.10
    • /
    • pp.665-670
    • /
    • 2016
  • Prevailing dissemination of machine tools and cutting technology have caused drastic developments of high speed dry machining with work materials of high hardness, and demands on the high-hardness-materials with high efficiency have become increasingly important in terms of productivity, cost reduction, as well as environment-friendly issue. Addition of Si to TiAlN has been known to form nano-composite coating with higher hardness of over 30 GPa and oxidation temperature over $1,000^{\circ}C$. However, it is not easy to add Si to TiAlN by using conventional PVD technologies. Therefore, Ti-Al-Si-N have been prepared by hybrid process of PVD with multiple target sources or PVD combined with PECVD of Si source gas. In this study, a single composite target of Ti-Al-Si was prepared by powder metallurgy of MA (mechanical alloying) and SPS (spark plasma sintering). Properties of he resulting alloying targets were examined. They revealed a microstructure with micro-sized grain of about $1{\sim}5{\mu}m$, and all the elements were distributed homogeneously in the alloying target. Hardness of the Ti-Al-Si-N target was about 1,127 Hv. Thin films of Ti-Al-Si-N were prepared by unbalanced magnetron sputtering method by using the home-made Ti-Al-Si alloying target. Composition of the resulting thin film of Ti-Al-Si-N was almost the same with that of the target. The thin film of Ti-Al-Si-N showed a hardness of 35 GPa and friction coefficient of 0.66.

Micro Power Properties of Harvesting Devices as a Function of PZT cantilever length and gross area (PZT 캔틸레버의 길이와 면적에 따른 에너지 하베스팅 장치의 출력 특성)

  • Kim, I.S.;Joo, H.K.;Song, J.S.;Kim, M.S.;Jeong, S.J.;Lee, D.S.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1246-1247
    • /
    • 2008
  • With recent advanced in portable electric devices, wireless sensor, MEMS and bio-Mechanics device, the new typed power supply, not conventional battery but self-powered energy source is needed. Particularly, the system that harvests from their environments are interests for use in self powered devices. For very low powered devices, environmental energy may be enough to use power source. Therefore, in other to made piezoelectric energy harvesting device, PMN-PZT thick film was formed by the screen printing method on the Ag/Pd coated alumina substrate. The layer was 8 layers and slurry where a-terpineol, ethycellulose, ferro B-75001 as Vehicle, PMN-PZT powder used are fabricated by ball mill. The output power quality was be also investigated by changing the load resistance, weight and frequency. The made piezoelectric energy harvesting device was resulted from the conditions of 33$k{\Omega}$, 0.25g, 197Hz respectively. The thick film was prepared at the condition of 2.75Vrms, and its power was 230${\mu} W$ and its thickness was 56${mu}m$. The piezoelectric energy harvesting device output voltage was increased, when the load weight, load resistance was increasing and resonance frequency was diminishing. The other side, resonance frequency was diminished, when the weight was increasing. And output power was continuously it changed by load resistance, output voltage, weight and resonance frequency.

  • PDF

Synthesis of SiC Nanoparticles by a Sol-Gel Process (나노 실리카와 카본블랙이용 탄화열 반응으로 나노 SiC 합성 및 특성)

  • Jeong, Kwang-Jin;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.246-249
    • /
    • 2013
  • Nano-sized ${\beta}$-SiC nanoparticles were synthesized combined with a sol-gel process and a carbothermal process. TEOS and carbon black were used as starting materials for the silicon source and carbon source, respectively. $SiO_2$ nanoparticles were synthesized using a sol-gel technique (Stober process) combined with hydrolysis and condensation. The size of the particles could be controlled by manipulating the relative rates of the hydrolysis and condensation reactions of tetraethyl orthosilicate (TEOS) within the micro-emulsion. The average particle size and morphology of synthesized silicon dioxide was about 100nm and spherical, respectively. The average particles size and morphology of the used carbon black powders was about 20nm and spherical, respectively. The molar ratio of silicon dioxide and carbon black was fixed to 1:3 in the preparation of each combination. $SiO_2$ and carbon black powders were mixed in ethanol and ball-milled for 12 h. After mixing, the slurries were dried at $80^{\circ}C$ in an oven. The dried powder mixtures were placed in alumina crucibles and synthesized in a tube furnace at $1400{\sim}1500^{\circ}C$ for 4 h with a heating rate of $10^{\circ}C$/min under flowing Ar gas (160 cc/min) and furnace cooling down to room temperature. SiC nanoparticles were characterized by XRD, TEM, and SAED. The XRD results showed that high purity beta silicon carbide with excellent crystallinity was synthesized. TEM revealed that the powders are spherical shape nanoparticles with diameters ranging from 15 to 30 nm with a narrow distribution.