• Title/Summary/Keyword: Micro Line

Search Result 617, Processing Time 0.032 seconds

Manufacturing Functional Nano-Composites by Using Field-Aided Micro-Tailoring Manipulation (Field-Aided Micro-Tailoring에 의한 기능성 나노복합재 제조)

  • Cho, Hee-Keun;Rhee, Juhun;Sim, Eun-Sup
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.178-185
    • /
    • 2012
  • One of a unique technique in manipulating a multifunctional composite is demonstrated in this study. An electric field is applied to a liquid suspension in order to align the inclusions along with the direction electric field. This is called FAiMTa(Field Aided Micro Tailoring). It makes orthotropic polymer composites by arranging the micro and/or nano size particle inclusions in chain-line formation. Several kinds of particles such as $Al_2O_3$, graphite, CNT(Carbon Nano Tube), W(Tungsten) are tested to verify the effectiveness of the FAiMTa. The particles redistributed in an epoxy suspension and their coupons show that mechanical and thermal properties of orthotropic and random composites containing those particles depend on the trend of particles' alignment. The micro-images of the functional composite from FAiMTa have been captures and their physical properties demonstrate their wide-range and state-of-the-art application for advanced multifunctional composites.

Deep X-ray Mask with Integrated Micro-Actuator for 3D Microfabrication via LIGA Process (3차원 LIGA 미세구조물 제작을 위한 마이크로 액추에이터 내장형 X-선 마스크)

  • Lee, Kwang-Cheol;Lee, Seung-S.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2187-2193
    • /
    • 2002
  • We present a novel method for 3D microfabrication with LIGA process that utilizes a deep X-ray mask in which a micro-actuator is integrated. The integrated micro-actuator oscillates the X-ray absorber, which is formed on the shuttle mass of the micro-actuator, during X-ray exposures to modify the absorbed dose profile in X-ray resist, typically PMMA. 3D PMMA microstructures according to the modulated dose contour are revealed after GG development. An X-ray mask with integrated comb drive actuator is fabricated using deep reactive ion etching, absorber electroplating, and bulk micromachining with silicon-on-insulator (SOI) wafer. 1mm $\times$ 1 mm, 20 $\mu$m thick silicon shuttle mass as a mask blank is supported by four 1 mm long suspension beams and is driven by the comb electrodes. A 10 $\mu$m thick, 50 $\mu$m line and spaced gold absorber pattern is electroplated on the shuttle mass before the release step. The fundamental frequency and amplitude are around 3.6 kHz and 20 $\mu$m, respectively, for a do bias of 100 V and an ac bias of 20 $V_{p-p}$ (peak-peak). Fabricated PMMA microstructure shows 15.4 $\mu$m deep, S-shaped cross section in the case of 1.6 kJ $cm^{-3}$ surface dose and GG development at 35$^{\circ}C$ for 40 minutes.

Cloud Generation Using a Huge Vertical Mine

  • Ma, Chang-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.E2
    • /
    • pp.78-88
    • /
    • 2006
  • In order to study the characteristics of cloud, a real-scale experiment for cloud generation was carried out using an extinct vertical mine (430 m height) located in the northeastern Honshu, Japan. The dry particles generated from the three-step concentrations of NaCl solutions were used for cloud generation. The number size distributions of initial dry particles and cloud droplets were monitored by Scanning Mobility Particle Sizer (SMPS) and Forward Scattering Spectrometer Probe (FSSP) at bottom and upper sites of pit, respectively. The polymeric water absorbent film (PWAF) method was employed to measure liquid water content ($W_L$) as a function of droplet size. Moreover the chemical properties of individual droplet replicas were determined by micro-PIXE. The CCN number concentration shows the lognormal form in dependence of the particle size, while the number size distributions of droplets are bimodal showing the peaks around $9{\mu}m$ and $20{\mu}m$ for every case. In comparison to background mineral particles, right shifting of size distribution line for NaCl particles was occurred. When NaCl solutions with three-step different concentrations were neulized, $W_L$ shows the strong droplet size dependence. It varied from $10.0mg\;m^{-3}$ up to $13.6mg\;m^{-3}$ with average $11.6mg\;m^{-3}$. A good relationship between $W_L$ and cloud droplet number concentration was obtained. Both chemical inhomogeneities (mixed components with mineral and C1) and homogeneities (only mineral components or C1) in individual droplet replicas were obviously observed from micro-PIXE elemental images.

A Study on the High Strength of porcelain insulators for transmission line (송전용 자기재 현수애자의 고강도 특성 연구)

  • Cho, H.G.;Han, S.W.;Park, K.H.;Choi, Y.K.;Lee, D.I.;Choi, I.H.;Kim, T.Y.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05e
    • /
    • pp.85-88
    • /
    • 2003
  • In this study, porcelain insulator samples which have a different alumina composition were manufactured in order to test electrical and mechanical properties and make an analysis of the propagation phenomena of micro cracks on porcelain body. From XRD quantitative analysis the crystalline phases were different with alumina composition, sample C and D which have about 17wt% Corundum phase without the Cristobalite phase shows better electrical and mechanical properties than sample A and 8 which have the Cristobalite phase. In dielectrics test on porcelain samples with below 17wt% alumina composition, it was found that the amount of glass phase$(SiO_2)$have an main effect to decrease the dielectric loss$(tan{\delta})$, and the dielectric breakdown voltage of aluminous porcelain insulators was largely affected by its relative density. As a micro cracks analysis, HRS were measured, then the intensity of HRS increased with the amount of alumina composition. On the other hand, the propagation behaviors of cracks was fairly influenced by the distribution of pores.

  • PDF

Improvement of Defect Density by Slurry Fitter Installation in the CMP Process (CMP 공정에서 슬러리 필터설치에 따른 결함 밀도 개선)

  • Kim, Chul-Bok;Seo, Yong-Jin;Seo, Sang-Yong;Lee, Woo-Sun;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05b
    • /
    • pp.30-33
    • /
    • 2001
  • Chemical mechanical polishing(CMP) process has been widely used to planarize dielectrics, which can apply to employed in integrated circuits for sub-micron technology. Despite the increased use of CMP process, it is difficult to accomplish the global planarization of free-defects in inter-level dielectrics (ILD). Especially, defects like micro-scratch lead to severe circuit failure, and affects yield. CMP slurries can contain particles exceeding $1{\mu}m$ size, which could cause micro-scratch on the wafer surface. The large particles in these slurries may be caused by particle agglomeration in slurry supply line. To reduce these defects, slurry filtration method has been recommended in oxide CMP. In this work, we have studied the effects of filtration and the defect trend as a function of polished wafer count using various filters in inter-metal dielectric(IMD)-CMP. The filter installation in CMP polisher could reduce defect after IMD-CMP. As a result of micro-scratches formation, it shows that slurry filter plays an important role in determining consumable pad lifetime.

  • PDF

A Study on Improvement of Slurry Filter Efficiency in the CMP Process (CMP 공정에서 슬러리 필터의 효율 개선에 관한 연구)

  • Park, Sung-Woo;Seo, Yong-Jin;Seo, Sang-Yong;Lee, Woo-Sun;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05b
    • /
    • pp.34-37
    • /
    • 2001
  • As the integrated circuit device shrinks to smaller dimensions, chemical mechanical polishing (CMP) process was required for the global planarization of inter-metal dielectric (IMD) layer with free-defect. However, as the inter-metal dielectrics (IMD) layer gets thinner, micro-scratches are becoming as major defects. Micro-scratches are generated by agglomerated slurry, solidified and attached slurry in pipe line of slurry supply system. To prevent agglomerated slurry particle from inflow, we installed 0.5${\mu}m$ POU (point of use) filter, which is depth-type filter and has 80% filtering efficiency for the $1.0{\mu}m$ size particle. In this paper, we studied the relationship between defect generation and pad count to understand the exact efficiency of the slurry filtration, and to find out the appropriate pad usage. Our preliminary results showed that it is impossible to prevent defect-causing particles perfectly through the depth-type filter. Thus, we suggest that it is necessary to optimize the flow rate of slurry to overcome depth type filters weak-point, and to install the high spray of de-ionized Water (DIW) with high pressure.

  • PDF

Life Analysis and Reliability Prediction of Micro-Switches based on Life Prediction Method

  • Ji, Jung-Geon;Shin, Kun-Young;Lee, Duk-Gyu;Song, Moon-Shuk;Lee, Hi-Sung
    • International Journal of Railway
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Reliability means that a product maintains its initial quality and performance at a certain period of time (time, distance, cycle etc) under given condition without failure. The given conditions include both environmental condition and operating condition. Environmental condition means a common natural environment such as temperature, humidity, vibration, and working condition means an artificial environment such as voltage, current load, place for installment, and hours of use, which occurs during the life of the product. In the field of railway vehicles, it is mandatory to use a part with the proved reliability as the extension of the life of vehicle become highly necessary. But the reliable assessment method for the reliability of the part is insufficient. If the reliability of the railway vehicle parts could be assessed by using the field data, the reliability of the entire system could also be evaluated reliably. In this study, life span of micro-switch for master controller is analyzed and prediction is performed based on its field data given by an operator considering the special circumstances of railway vehicles such as the operation of a large number of trains on the same line.

The Prediction of Time-Dependent Thermal Conductivity of Polyurethane Foam with Cell Gas Analysis (셀 가스분석을 이용한 우레탄폼의 열전도도 장기변화 예측)

  • Lee, Hyo-Jin;Chun, Jong-Han;Kim, Jin-Seon;Lee, Jin-Bok;Kang, Nam-Goo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1367-1372
    • /
    • 2009
  • A proprietary device is adopted to break out the membrane of cell in the rigid polyurethane foam. As it is known, the membrane of cell is hardly tearing-off thoroughly in a mechanical way due to both its elastic characteristic and micro sized pores. In this study, a novel experimental approach is introduced to burst out all gases inside the cells of the rigid polyurethane foam by abrasively grinding micro-cells completely into fine powder. The biggest advantage of this approach is to be capable of releasing all gases out from the cell even in the micro pores. As clearly reflected from the repeatability, the accuracy of the result is highly improved and high confidence in the data sets as well. For the measurements of not only gas composition but partial pressure for each gas simultaneously as well, a precision gas mass spectrometer is used in-line directly to the abrasive grinding device. To control the starting point of the polyurethane foam, all samples were prepared on site in the laboratory. Manufactured time is one of the most critical factors in characterization of cell gas composition because it is known that one of gas composition, especially, carbon dioxide, is diffused out dramatically in a short period of time as soon as it is foamed.

  • PDF

Religion and Banking : A Study of Islamic Finance in India

  • Baber, Hasnan;Zaruova, Chinar
    • The Journal of Industrial Distribution & Business
    • /
    • v.9 no.6
    • /
    • pp.7-13
    • /
    • 2018
  • Purpose - The purpose of this paper is to elucidate the limelight question 'why India should open arms for Islamic banking?'. Research design, data, and methodology - The paper is theoretical and conceptual in nature and provides results based on significant literature review. Results - This paper will start with the discussion why Islamic name does not make it only for Muslims?, then its features and how it can improve India's current economic situation. Also this study will analyze the ability of Islamic finance to act as Micro-finance tool by including people who does not participate in economic activities. This paper also concludes that why religious issue should be sidelined in order to accept Islamic finance for empowerment of Muslim and non-Muslim minorities which live in abject poor conditions. Conclusions - Islamic finance has lot of merits which cannot be ignored by only looking at the name and believing that it is only for Muslims. Indian economic system needs a financial system which will work for welfare and not for profit to help poor communities in coming out of poverty. Interest free loans and micro-finance tools are the only way to help below poverty line population to raise their income level.

Preliminary Study on the Visualization and Quantification of Elemental Compositions in Individual Microdroplets using Solidification and Synchrotron Radiation Techniques

  • Ma, Chang-Jin;Tohno, Susumu;Kasahara, Mikio
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.1
    • /
    • pp.56-63
    • /
    • 2011
  • Quantifying the solute composition of a cloud droplet (or a whole droplet) is an important task for understanding formation processes and heating/cooling rates. In this study, a combination of droplet fixation and SR-XRF microprobe analysis was used to visualize and quantify elements in a micro-scale droplet. In this study, we report the preliminary outcome of this experiment. A spherical micro-scale droplet was successfully solidified through exposure to ${\alpha}$-cyano-acrylate vapor without affecting its size or shape. An X-ray microprobe system equipped at the beam line 37XU of Super Photon ring 8 GeV (SPring-8) was applied to visualize and quantify the elemental composition in an individual micro-scale droplet. It was possible to reconstruct 2D elemental maps for the K and Cl contained in a microdroplet that was dispensed from the 10-ppm KCl standard solution. Multi-elemental peaks corresponding to X-ray energy were also successfully resolved. Further experiments to determine quantitative measures of elemental mass in individual droplets and high-resolution X-ray microtomography (i.e., 3D elemental distribution) are planned for the future.