• Title/Summary/Keyword: Micro Lens Array

Search Result 65, Processing Time 0.024 seconds

Efficiency Improvement of MLA (Micro Lens Array) using Aperture (Aperture를 이용한 MLA의 효율 개선)

  • Seo, Hyun-Woo;Nam, Min-Woo;Oh, Hae-Kwan;Ahn, Hyo-Chan;Kim, Tae-June;Wei, Chang-Hyun;Lee, Kee-Keun;Yang, Sang-Sik;Song, Yo-Tak
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.91-94
    • /
    • 2011
  • This paper presents light transmission efficiency by optical adhesive thickness between MLA and aperture layer and by aperture hole size. The gap between MLA and Aperture layer is adjusted by the shim. The more optical adhesive thickness increases, the better light transmission efficiency increases up to a point. After that, the light transmission efficiency decreases because stray lights cannot transmit through the aperture layer owing to cut-off by aperture layer. And as a result of light transmission efficiency with changing aperture hole size, the light transmission efficiency is proportional to area of aperture hole. The more specified process is made, the better data and sample will be got.

Ultra Precision Machining Technique for Optical System Parts (초정밀 가공기를 활용한 광학계 부품 가공기술)

  • Yang, Sun-Choel;Kim, Sang-Hyuk;Huh, Myung-Sang;Chang, Ki-Soo;Park, Soon-Sub;Won, Jong-Ho;Kim, Geon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.13-19
    • /
    • 2012
  • Ultra Precision Machining Techniques, such as manufacturing Micro Lens Array(MLA), off-axis mirror, $F-{\theta}$ lens for laser printer, are achieved, based on technologies in consequence of development of modern high-precision machining mechanism. Above all, FTS(Fast Tool Servo) and STS(Slow Tool Servo) are more innovative technologies for reducing time and development costs. In this paper, it is described that MLA machining technique by FTS, off-axis mirror machining technique by STS, optics for observing space, and development of infrared aspheric lens for a thermal imaging microscope.

Development of UV imprinting process for micro lens array of image sensor (UV 임프린트를 이용한 이미지 센서용 마이크로 렌즈 어레이 성형 공정 개발)

  • Lim, Ji-Seok;Kim, Seok-Min;Jeong, Gi-Bong;Kim, Hong-Min;Kang, Shin-Il
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.17-21
    • /
    • 2005
  • High-density image sensors have microlens array to improve photosensitivity. It is conventionally fabricated by reflow process. The reflow process has some weak points. UV imprinting process can be proposed as an alternative process to integrate microlens array on photodiodes. In this study, the UV imprionting process to integrate microlens array on image sensor was developed using W transparent flexible mold and simulated image sensor substrate. The UV transparent flexible mold was fabricated by replicating master pattern using siliconacrylate photopolymer. The releasing property and shape accuacy of siliconacrylate mold was analysed. After UV imprinting process, replication quality and align accuracy was analysed.

  • PDF

Development of UV imprinting process for micro lens array of image sensor (UV 임프린트를 이용한 이미지 센서용 마이크로 렌즈 어레이 성형 공정 개발)

  • Lim, Ji-Seok;Kim, Seok-Min;Jeong, Gi-Bong;Kim, Hong-Min;Kang, Shin-Il
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.2
    • /
    • pp.91-95
    • /
    • 2006
  • High-density image sensors rave microlens array to improve photosensitivity. It is conventionally fabricated by reflow process. The reflow process has some weak points. UV imprinting process can be proposed as an alternative process to integrate microlens array on photodiodes. In this study, the UV imprionting process to integrate microlens array on image sensor was developed using UV transparent flexible mold and simulated image sensor substrate. The UV transparent flexible mold was fabricated by replicating master pattern using siliconacrylate photopolymer. The releasing property and shape accuacy of siliconacrylate mold was analysed. After UV imprinting process, replication quality and align accuracy was analysed.

  • PDF

Molding of glass micro optical components (유리 마이크로 광부품 어레이의 성형)

  • 최우재;강신일
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.76-79
    • /
    • 2003
  • Glass molding is an advantageous method to manufacture glass micro optical components. However, it is difficult to make tungsten carbide core for glass molded micro optics way. We have developed novel method to fabricate tungsten carbide core for glass molding of glass micro optical components. Silicon masters were fabricated by micro machining. Tungsten Carbide cores were fabricated by forming, sintering and coating. Finally we fabricated glass molded V-groove with pitch of 192$\mu\textrm{m}$ and glass microlens way with lens diameter of 36∼225$\mu\textrm{m}$ by the present method.

  • PDF

Implementation of an Emulator for the Integrated Image Reconstruction according to Distance (거리에 따른 집적 영상 복원을 지원하는 에뮬레이터의 구현)

  • Jang, Ha Eun;Lee, Eun Ji;Lee, Yeon Ju;Lim, Soon-Bum
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.3
    • /
    • pp.548-556
    • /
    • 2016
  • Integral imaging is an auto-stereoscopic display method that can produce 3D image of a finite viewing window through an array of micro elemental lenses. Integral imaging requires the pickup part of each elemental images acquisition and display part of reconstruction of the images. The successful reconstructed image depends on various parameters such as distance between lens arrays and display device, focal length of lenses, and a number of the array. In this paper, we present reconstruction emulator for display of Integral imaging in order to adjust parameters for 3D contents reconstruction and to observe the result from different configuration. Especially, we provide the user interface for the emulator to control the distance easily. We have confirmed through various experiments that the emulator adjusted the distance and could check error in the process of creating elemental images.

A Study on the Cutting Conditions of Self-Induced Chattering in Micro Shaping with Diamond Tool (다이아몬드 미세형삭가공의 자려진동 발생경향에 관한 연구)

  • 임한석;이언주;김술용;안중환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.141-149
    • /
    • 1998
  • Diamond shaping is one of the machining strategies to make the optical micro-groove molds, and it is especially useful when the component is an assembly of the linear micro-groove array. A mirrorlike surface and an arbitrary crose-sectional curve can be easily made by the diamond tool. However, the cutting speed of shaping is relatively lower than that of the other cutting methods, and there exist an unstable cutting conditions that generate the chatter. This study is focused on the modeling of the simplified self-induced chatter of the diamond shaping, and the machinabilities of three materials are compared by cutting experiments. From the chatter model and experiments, it is found that the unstable cutting conditions exist when the depth of cut is low and cutting speed is high. It is also found that the brass is relatively good material in micro shaping than copper or aluminium from the cutting experiments.

  • PDF

Ge-doped Boro-Phospho-Silicate Glass Micro-lens Array Produced by Thermal Reflow (가열용융 방법에 의한 Ge-BPSG 마이크로렌즈 어레이 제작)

  • Jeong, Jin-ho;Oh, Jin-Gyeong;Choi, Jun-Seok;Choi, Gi-Seon;Lee, Hyeong-Jong;Bae, Byeong-Seong
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.340-344
    • /
    • 2005
  • Microlens cells of Ge-doped BPSG (Boro-Phospho-Silicate Glass) are fabricated by dicing the film produced by FHD (Flame Hydrolysis Deposition). Microlens arrays of $53.4{\mu}m$ square unit are produced by the thermal reflow of the diced unit cells at $1200^{\circ}C$. The gap between the microlenses was about $70{\mu}m,$ and the thickness of the produced lens was about $28.4{\mu}m$. We analyzed the reflowed shape of the microlens cell by an image-process technique, and the focal length was about $62.2{\mu}m$. This method of fabricating a microlens is simple and inexpensive compared to the conventional method using the photolithographic process. Also, the control of the radius of curvature of the microlens is easier and a more precise microlens way of various types can be fabricated using this method.

A study of burr formation on microgrooving for fresnel lens mould (프레넬렌즈 금형용 미세홈 가공에 있어서 버 발생 경향에 관한 연구)

  • 임한석;안중환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.28-34
    • /
    • 1997
  • The side burrs and shape distortion resulting from the micromachining of an array of V-shape microgrooves in fresnel lens mould were experimentally invesigated. The focus of this study is on the influence of depth of cut and prism angle on the burr growing rate. The main experiments were con- ducted on the single prism cutting for the convinient of measuring the burr shape and cutting force. From the observation of the burr shape and burr growing rate, it was found that there exits a critical depth of cut below which the burrs are more or less irregular and weak. But above that critical value, the burrs are re- latively clear and stiff.

  • PDF