• 제목/요약/키워드: Micro Etching

검색결과 425건 처리시간 0.027초

Design and Fabrication of Electrostatic Inkjet Head using Silicon Micromachining Technology

  • Kim, Young-Min;Son, Sang-Uk;Choi, Jae-Yong;Byun, Do-Young;Lee, Suk-Han
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제8권2호
    • /
    • pp.121-127
    • /
    • 2008
  • This paper presents design and fabrication of optimized geometry structure of electrostatic inkjet head. In order to verify effect of geometry shape, we simulate electric field intensity according to the head structure. The electric field strength increases linearly with increasing height of the micro nozzle. As the nozzle diameter decreases, the electric field along the periphery of the meniscus can be more concentrated. We design and fabricate the electrostatic inkjet heads, hole type and pole type, with optimized structure. It was fabricated using thick-thermal oxidation and silicon micromachining technique such as the deep reactive ion etching (DRIE) and chemical wet etching process. It is verified experimentally that the use of the MEMS inkjet head allows a stable and sustainable micro-dripping mode of droplet ejection. A stable micro dripping mode of ejection is observed under the voltages 2.5 kV and droplet diameter is $10\;{\mu}m$.

Microfluidic LOC 시스템 (Microfluidic LOC System)

  • 김현기;구홍모;이양두;이상렬;윤영수;주병권
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.906-911
    • /
    • 2004
  • In this paper, we used only PR as etching mask, while it used usually Cr/AU as etching mask, and in order to fabricate a photosensor has the increased sensitivity, we investigated on the sensitivity of general type and p-i-n type diode. we designed microchannel size width max 10um, min 5um depth max 10um, reservoir size max 100um, min 2mm. Fabrication of microfluidic devices in glass substrate by glass wet etching methods and glass to glass fusion bonding. The p-i-n diode has higher sensitivity than photodiode. Considering these results, we fabricated p-i-n diodes on the high resistive($4k{\Omega}{\cdot}cm$) wafer into rectangle and finger pattern and compared internal resistance of each pattern. The internal resistance of p-i-n diode can be decreased by the application of finger pattern has parallel resistance structure from $571\Omega$ to $393\Omega$.

  • PDF

엑사이머 레이져를 이용한 실리콘웨이퍼의 미세가공

  • 윤경구;이성국;황경현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.1058-1062
    • /
    • 1997
  • Development of laser induced chemical etching technologt with KrF laser are carried out in this study for micromachining of silicon wafer. The paper is devoted to experimental identification of excimer laser induced mechanism of silicon under chlorine pressures(0.02~500torr). Experimental results on pulsed KrF excimer laser etching of silicon in chorine atmosphere are presented. Etching rate dependency on laser fluence and chlorine pressure are discussed on the basis of experimental analysis, it is concluded that accurate digital micro machining process of silicon wafer can achieved by KrF laser induced chemical etching technology.

집속 아르곤 이온 레이저 빔을 이용한 실리콘 기판의 식각 (Etching of Silicon Wafer Using Focused Argon lon Laser Beam)

  • 정재훈;이천;박정호
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권4호
    • /
    • pp.261-268
    • /
    • 1999
  • Laser-induced thermochemical etching has been recognized as a new powerful method for processing a variety of materials, including metals, semiconductors, ceramics, insulators and polymers. This study presents characteristics of direct etching for Si substrate using focused argon ion laser beam in aqueous KOH and $CCl_2F_2$ gas. In order to determine process conditions, we first theoretically investigated the temperature characteristics induced by a CW laser beam with a gaussian intensity distribution on a silicon surface. Major process parameters are laser beam power, beam scan speed and reaction material. We have achieved a very high etch rate up to $434.7\mum/sec$ and a high aspect ratio of about 6. Potential applications of this laser beam etching include prototyping of micro-structures of MEMS(micro electro mechanical systems), repair of devices, and isolation of opto-electric devices.

  • PDF

Characterization of Combined Micro- and Nano-structure Silicon Solar Cells using a POCl3 Doping Process

  • Jeong, Chaehwan;Kim, Changheon;Lee, Jonghwan;Yi, Junsin;Lim, Sangwoo;Lee, Suk-Ho
    • Current Photovoltaic Research
    • /
    • 제1권1호
    • /
    • pp.69-72
    • /
    • 2013
  • Combined nano- and micro-wires (CNMWs) Si arrays were prepared using PR patterning and silver-assisted electroless etching. A $POCl_3$ doping process was applied to the fabrication of CNMWs solar cells. KOH solution was used to remove bundles in CNMWs and the etching time was varied from 30 to 240 s. The lowest reflectance of 3.83% was obtained at KOH etching time of 30 s, but the highest carrier lifetime of $354{\mu}s$ was observed after the doping process at 60 s. At the same etching time, a $V_{oc}$ of 574 mV, $J_{sc}$ of $28.41mA/cm^2$, FF of 74.4%, and Eff. of 12.2% were achieved in the CNMWs solar cell. CNMWs solar cells have potential for higher efficiency by improving the post-process and surface-rear side structure.

초미세 금속 박판의 마이크로 채널 포밍 (Micro Channel Forming with Ultra Thin Metal Foil)

  • 주병윤;오수익;백승욱
    • 대한기계학회논문집A
    • /
    • 제30권2호
    • /
    • pp.157-163
    • /
    • 2006
  • Our research dealt with micro fabrication using micro forming process. The goal of the research was to establish the limit of forming process concerning the size of forming material and formed shape. Flat-rolled ultra thin metallic foils of pure copper(3.0 and $1.0{\mu}m$ in thickness)and stainless steel($2.5{\mu}m$ in thickness) were used for forming material. We obtained the various shapes of micro channels as using designed forming process. $12-14{\mu}m$ wide and $9{\mu}m$ deep channels were made on $3.0{\mu}m$ thick foil and $6{\mu}m$ wide and $3{\mu}m$deep channels were made on $1.0{\mu}m$ thick foil. Si wafer die for forming was fabricated by using etching technique. And the relation of etching time and die dimension was investigated for fabricating precisely die groove. For the forming, die and metal foil were vacuum packed and the forming was conducted with a cold isostatic press. The formed channels were examined in terms of their dimension, surface qualities and potential for defects. Base on the examinations, formability of ultra thin metallic foil was also discussed. Finally, we compared the forming result with simulation. The result of research showed that metal forming technology is promising to produce micro parts.

초소형 연소기를 위한 촉매 합성, 담지방법 및 담지체 (Catalyst Preparations, Coating Methods, and Supports for Micro Combustor)

  • 진정근;김충기;이성호;권세진
    • 한국연소학회지
    • /
    • 제11권2호
    • /
    • pp.7-14
    • /
    • 2006
  • Catalytic combustion is one of the suitable methods for micro power source due to high energy density and it can be applied to micro structured chamber without consideration of quenching since it is flameless combustion. Catalyst loading in the micro structured combustion chamber is one of the most important issues in the development of micro catalytic combustors. In this research, to coat catalyst on the chamber wall, two methods were investigated. First, $Al_2O_3$ was selected as a support of Pt and $Pt/Al_2O_3$ was synthesized through the alumina sol-gel procedure. To improve the coating thickness and adhesion between catalyst and substrate, heat resistant and water solvable organic-inorganic hybrid binder was used. Porous silicon was also investigated as a catalyst support for platinum. Through the parametric studies of current density and etching time, fabrication process of $1{\sim}2{\mu}m$ of diameter and about $25{\mu}m$ depth pores was confirmed. Coated substrates were test in the micro channel combustor which was fabricated by the wet etching and machining of SUS 304. Using $Pt/Al_2O_3$ coated substrate and Pt coated porous silicon substrate, conversion rate of fuel was over 95 % for $H_2/Air$ premixed gas.

  • PDF

Fabrication of micro injection mold with modified LIGA micro-lens pattern and its application to LCD-BLU

  • Kim, Jong-Sun;Ko, Young-Bae;Hwang, Chul-Jin;Kim, Jong-Deok;Yoon, Kyung-Hwan
    • Korea-Australia Rheology Journal
    • /
    • 제19권3호
    • /
    • pp.165-169
    • /
    • 2007
  • The light guide plate (LGP) of LCD-BLU (Liquid Crystal Display-Back Light Unit) is usually manufactured by forming numerous dots by etching process. However, the surface of those etched dots of LGP is very rough due to the characteristics of etching process, so that its light loss is relatively high due to the dispersion of light. Accordingly, there is a limit in raising the luminance of LCD-BLU. In order to overcome the limit of current etched-dot patterned LGP, micro-lens pattern was tested to investigate the possibility of replacing etched pattern in the present study. The micro-lens pattern fabricated by the modified LiGA with thermal reflow process was applied to the optical design of LGP. The attention was paid to the effects of different optical pattern type (i.e. etched dot, micro-lens). Finally, the micro-lens patterned LGP showed better optical qualities than the one made by the etched-dot patterned LGP in luminance.

미세금형 가공을 위한 전기화학식각 공정의 유한요소 해석 및 실험결과 비교 (Finite Element Simulation and Experimental Study on the Electrochemical Etching Process for Fabrication of Micro Metal Mold)

  • 류헌열;임현승;조시형;황병준;이성호;박진구
    • 한국재료학회지
    • /
    • 제22권9호
    • /
    • pp.482-488
    • /
    • 2012
  • To fabricate a precise micro metal mold, the electrochemical etching process has been researched. We investigated the electrochemical etching process numerically and experimentally to determine the etching tendency of the process, focusing on the current density, which is a major parameter of the process. The finite element method, a kind of numerical analysis, was used to determine the current density distribution on the workpiece. Stainless steel(SS304) substrate with various sized square and circular array patterns as an anode and copper(Cu) plate as a cathode were used for the electrochemical experiments. A mixture of $H_2SO_4$, $H_3PO_4$, and DIW was used as an electrolyte. In this paper, comparison of the results from the experiment and the numerical simulation is presented, including the current density distribution and line profile from the simulation, and the etching profile and surface morphology from the experiment. Etching profile and surface morphology were characterized using a 3D-profiler and FE-SEM measurement. From a comparison of the data, it was confirmed that the current density distribution and the line profile of the simulation were similar to the surface morphology and the etching profile of the experiment, respectively. The current density is more concentrated at the vertex of the square pattern and circumference of the circular pattern. And, the depth of the etched area is proportional to the current density.