• Title/Summary/Keyword: Micro Degree

Search Result 404, Processing Time 0.03 seconds

Effects of Branch Degree of CPAM for Retention and Drainage

  • Son, Dong-Jin;Kim, Bong-Yong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2007.11a
    • /
    • pp.21-33
    • /
    • 2007
  • CPAM has been applied to the paper industry for the purpose of wet-end improvement for a long time. And molecular weight and charge density have been managed most important quality factors to make CPAM for this application. Recently branched CPAM was developed to improve retention and drainage characteristics and we considered branch degree of CPAM as important factor as molecular weight and charge density. In this experiment, we tried to investigate physical and chemical properties to determine branch degree and flocculation efficiency using Arbocell pulp which was recently developed micro size pulp and finally we applied retention and drainage test under the ONP stock condition.

  • PDF

Characterization of degree of alignment of polymer microfibers electrospun on a rotating water collector

  • Li, Shichen;Lee, Bong-Kee
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.125-130
    • /
    • 2021
  • In this study, the degree of alignment of polymer microfibers produced by electrospinning using a rotating water collector was evaluated. Aligned micro- and nano-fibers are required in various practical applications involving anisotropic properties. The degree of fiber alignment has many significant effects; hence, and accurate quantitative analysis of fiber alignment is necessary. Therefore, this study developed a simple and efficient method based on two-dimensional fast Fourier transform, followed by ellipse fitting. As a demonstrative example, the polymer microfibers were electrospun on the rotating water collector as the alignment of microfibers can be easily controlled. The analysis shows that the flow velocity of the liquid collector significantly affects the electrospun microfiber alignment, that is, the higher the flow velocity of the liquid collector, the greater is the degree of microfiber alignment. This method can be used for analyzing the fiber alignment in various fields such as smart sensors, fibers, composites, and textile engineering.

Angled Capillary Method for Determining Erythrocyte Sedimentation Rate of Goat (경사모세관법(傾斜毛細管法)에 의한 산양혈액(山羊血液)의 적혈구침강율(赤血球沈降率) 측정(測定))

  • Shin, Sung-shik;Lee, Bang-whan;Shin, Jong-uk
    • Korean Journal of Veterinary Research
    • /
    • v.26 no.1
    • /
    • pp.187-194
    • /
    • 1986
  • The purpose of this study is to develop a new method which enables the goat ESR to be used as an effective clinical test. Blood samples were taken from 61 Korean native goats aged above one year old and the effect of tube inclinations, tube bores, tube lengths, environmental temperatures during tests and packed erythrocyte volumes (PCV) on the ESR were observed. The results were summarized as follows. 1. The ESR/hr using capillary hematocrit tube (Micro-Ht-tube) was gradually increased as the tube angle inclined from 90 (vertical) to 15 degrees and the best angle in view of both security and fast sedimentation rate was found to be an angle of 45 degrees. 2. The 45-degree angled ESR ($45^{\circ}$-ESR) increased as the diameter of tube bore decreased. 3. The tube length did not affect the $45^{\circ}$-ESR in percent. 4. The $45^{\circ}$-ESR increased with the increased environmental temperature during the ESR test. 5. The heparinized Micro-Ht tubes did not affect the $45^{\circ}$-ESR of EDTA-blood in healthy group but in anemic group. In the anemic group, the ESRs by the heparinized Micro-Ht-tubes were slightly higher than those by non-heparinized Micro-Ht-tubes. 6. By using the autologous plasma, PCV of the blood was adjusted to be 10, 20, 30, 40 and 50ml/100ml and $45^{\circ}$-ESRs were determined in the Micro-Ht-tubes. The $45^{\circ}$-ESRs increased as the values of PCV decreased. The regression of the $45^{\circ}ESR$ to PCV was curvilinear with the second degree polynomial, $Y=42.1838-1.7355X+0.0180X^2$(r=0.9997). 7. The $45^{\circ}$-ESR/hr, using non-heparinized Micro-Ht-tubes at $20^{\circ}C$, was determined in 35 healthy Korean native goats. The average PCV was $30.6{\pm}1.4ml/100ml$. The observed ESR values averaged $6.8{\pm}1.7%$ and the corrected ESR values to the standard PCV of 31ml/100ml averaged $6.5{\pm}1.2%$. From these results, the angled capillary tube method was found to be desirable ESR test of goat blood in which EDTA-blood is filled in nonheparinized Micro-Ht-tubes held at an angle of 45 degrees for an hour at $20^{\circ}C$.

  • PDF

Six D.O.F Ultra Fine Stage using Electromagnetic Force Control (전자기력 제어를 이용한 6 자유도 초정밀 스테이지)

  • 정광석;백윤수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.158-164
    • /
    • 2000
  • In recent year, desire and request fer micro automation are growing rapidly covering the whole range of the industry. This has been caused mainly by request of more accurate manufacturing process due to a higher density of integrated circuits in semiconductor industry. This paper presents a six d.o.f fine motion stage using magnetic levitation technique, which is one of actuating techniques that have the potential for achieving such a micro motion. There is no limit in motion resolution theoretically that the magnetically levitated part over a fixed stator can realize. In addition, it Is possible to manipulate the position and the force of the moving part at the same time. Then, the magnetic levitation technique is chosen into the actuating method. However, we discuss issues of design, kinematics, dynamics, and control of the proposed system. And a few experimental results fur step input are given.

  • PDF

CRYOGENIC AND ELEVATED TEMPERATURE CYCLING OF CARBON/POLYMER COMPOSITES (탄소/고분자 복합재료의 극저온-고온 싸이클링)

  • Yeh, Byung-Hahn;Won, Yong-Gu
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.38-42
    • /
    • 2002
  • An apparatus was developed to repetitively apply a $-196^{\circ}C$ thermal load to coupon-sized mechanical test specimens. Using this device, IM7/5250-4 (carbon / bismaleimide) cross-ply and quasi-isotropic laminates were submerged in liquid nitrogen ($LN_2$) 400 times. Ply-by-ply micro-crack density, laminate modulus, and laminate strength were measured as a function of thermal cycles. Quasi-isotropic samples of IM7/977-3 (carbon / epoxy) composite were also manually cycled between liquid nitrogen and an oven set at $120^{\circ}C$ for 130 cycles to determine whether including elevated temperature in the thermal cycle significantly altered the degree or location of micro-cracking. In response to thermal cycling, both materials micro-cracked extensively in the surface plies fellowed by sparse cracking of the inner plies. The tensile modulus of the IM7/5250-4 specimens was unaffected by thermal cycling, but the tensile strength of two of the lay-ups decreased by as much as 8.5%.

  • PDF

CRYOGENIC AND ELEVATED TEMPERATURE CYCLING OF CARBON / POLYMER COMPOSITES FOR RESUABLE LAUNCH VEHICLE CRYOGENIC TANKS (왕복선 연료탱크 적용을 위한 탄소/고분자 복합재료의 극저온-고온 싸이클링)

  • 예병한;원용구
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.151-155
    • /
    • 2003
  • An apparatus was developed to repetitively apply a -196 $^{\circ}C$ thermal load to coupon-sized mechanical test specimens. Using this device, IM7/5250-4 (carbon / bismaleimide) cross-ply and quasi-isotropic laminates were submerged in liquid nitrogen (L$N_2$) 400 times. Ply-by-Ply micro-crack density, laminate modulus, and laminate strength were measured as a function of thermal cycles. Quasi-isotropic samples of IM7/977-3 (carbon / epoxy) composite were also manually cycled between liquid nitrogen and an oven set at 120 $^{\circ}C$ for 130 cycles to determine whether including elevated temperature in the thermal cycle significantly altered the degree or location of micro-cracking. In response to thermal cycling, both materials micro-cracked extensively in the surface plies followed by sparse cracking of the inner plies. The tensile modulus of the IM7/5250-4 specimens was unaffected by thermal cycling, but the tensile strength of two of the lay-ups decreased by as much as 8.5 %.

  • PDF

Flotation Characteristics of Activated Sludge by Micro-bubbles (미세 기포에 의한 활성슬러지의 부상특성)

  • Kim, Seong-Jin;Kang, Byoung-Jun;Park, Sang-Wook;Lee, Jae-Wook;Jung, Heung-Joe;Kwak, Dong-Heui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.501-507
    • /
    • 2006
  • Dissolved air flotation (DAF) has been well known for the gravity separation process. The solids to be separated are transferred from the water body to the water surface using micro-air bubbles. DAF has also been used for enhancing solids-liquid separation of industrial and municipal wastewater by adding a its unit parallel to a sedimentation unit to reduce the hydraulic loading in the sedimentation clarifier. This study was to investigate flotation characteristics of activated sludge by the recent DAF technique without chemical agents. In addition, the effect on temperature in flotation of activated sludge and the thickening degree of activated sludge were studied.

A study on releasing high aspect ratio micro features formed with a UV curable resin (UV경화수지의 고형상비 미세패턴 이형에 관한 연구)

  • Kwon, Ki-Hwan;Yoo, Yeong-Eun;Kim, Chang-Wan;Park, Young-Woo;Je, Tae-Jin;Choi, Doo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1833-1836
    • /
    • 2008
  • Recently as the micro surface features become higher and diverse in their shapes, the releasing of the molded features becomes more crucial for manufacturing of the micro patterned products. The higher aspect ratio of the features or more complex shape of the features results in larger releasing force, elongation or cohesive failure of the features during the releasing. Another issue would be the uniformity of the released surface features after molding, especially for applications with large area surface. The micro patterned optical film, one of typical applications for micro surface features, consists of two layers, the thermoplastic base film and the micro formed UV resin layer. Therefore two interfaces are typically involved during the forming of this micro featured film; one is between the base film and the UV resin and another is between the resin and the pattern master. To improve the releasing of the molded surface features, the adhesive characteristic was investigated at these two interfaces. A PET film was used as a base film and two UV curable resins with different surface energy were prepared for different adhesiveness. Also the two different pattern masters were employed; one is made from brass-copper alloy and fabricated with PMMA. The adhesiveness at each interface was measured for some combinations of these base film, UV resins and the masters and the effect of this adhesiveness on the releasing was investigated.

  • PDF

Elastic Wave Properties of STS316L with Different Rolling Temperature (가공 온도가 다른 STS316L의 탄성파 특성)

  • Tak, Young-Joon;Gu, Kyoung-Hee;Lee, Gum-Hwa;Nam, Ki-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.325-331
    • /
    • 2022
  • In this study, austenitic 316L stainless steel was rolled at three different temperatures (100℃, -50℃, -196℃) at five rolling degree (0, 16, 33, 50, 66 and 80%). The rolled specimen was examined for micro structure, and the volume fraction and mechanical properties were evaluated. In particular, the rolling specimen detected the elastic wave generated in tensile and investigated the relationship between the rolling degree and the dominant frequency. As the rolling degree increased, austenite decreased and martensite increased. The volume fraction of martensite more increased at lower temperatures, but increased rapidly at the rolling degree of 50% of all rolling temperature. Tensile strength increased rapidly with the increase of the rolling degree, and was larger at lower temperatures. The elongation decreased sharply to the rolling degree of 33%, but decreased gently thereafter. The dominant frequency highly appeared as the volume fraction of martensite increased, but the dominant frequency was higher at the low temperature rolling temperature. A similar trend was also observed in the relationship between tensile strength and dominant frequency.