• Title/Summary/Keyword: Micro Cutting Machine

Search Result 95, Processing Time 0.029 seconds

Micro Turning on Face using Elliptical Vibration Cutting (타원궤적 진동절삭법을 이용한 미세 면선삭)

  • Kim, Gi-Dae;Loh, Byoung-Gook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.82-88
    • /
    • 2009
  • Ultra-precision turning is highly needed to manufacture molds for precision lens. In this study, micro-turning combined with elliptical vibration cutting (EVC), which is known to enhance micro- machining quality, was investigated by installing a rotary stage into the micro-grooving machine. From machining experiments involving materials of copper, brass, and aluminum and single and poly crystalline diamond tools, it was found that EVC produced thinner and curlier chips and that better surface finish could be achieved, compared with conventional turning, owing to prohibition of formation of burrs and built-up edges. Therefore, we found EVC micro turning could be readily utilized to manufacture precision mold.

The Simulation of Cutting force Estimate Model at Micro-Stage for Ultra Precision Cutting Machine of Nano Part (나노부품 초정밀가공기용 마이크로스테이지의 절삭력 예측모델 시뮬레이션)

  • 김재열;심재기;곽이구;안재신;한재호;노기웅
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.173-178
    • /
    • 2003
  • Recently, according to the development of mechatronics industry that was composed of NT, ST, IT, RT and etc, the 1 necessity of nano-parts was increased. Because of the necessity, this research was started for improving work precision of the parts as fixing UPCU( Ultra Precision Cutting Unit)on lathe. So, in this research we executed the modeling of UPCU (Ultra Precision Cutting Unit) by the application of PZT, the relationship between the displacement of tool in UPCU and the cutting force of it has been in take a triangular position in the case of plane cutting. The modeling of system that is containing the fine displacement was performed. Also, we found like to find the optimal cutting condition through the simulation of relationship between the displacement and the cutting force.

  • PDF

Evaluation of Machinability of Micro groove by Cutting Environments in High Speed Machining using Ball End Mill (소구경 미세홈 고속가공시 가공환경변화에 따른 가공성 평가)

  • 정연행;이태문;강명창;이득우;김정석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.32-37
    • /
    • 2002
  • High speed machining is one of most effective technologies to improve productivity. It can give great advantage for manufacture of die and Moulds. However, when the high speed machining of materials, especially in machining of micro groove, a severely thermal demage was generated on workpiece and tool. Generally, the cutting fluid is used to improve penetration, lubrication, and cooling effect. In order to rise the performance of lubrication, it contains extreme pressure agents (Cl, S, P). But the environment of work room go bad by those additive Therefore, the compressed chilly air with Oil mist system was developed to replace the conventional cutting fluid system. This paper carried out the tests to evaluate the machinability by the cutting environment in high speed micro groove machining of NAK80 (HRC40). Compressed chilly air with oil mist was ejected on the contact area between cutting edge and workpiece. The effectiveness of this developed compressed chilly air with oil mist system was evaluated in terms of tool life. The results showed that the tool life of carbide tool coated TiAIN with compressed chilly air mist cooling was much longer than with dry and flood coolant when cutting the material.

  • PDF

A Study of Machining Error Compensation for Tool Deflection in Side-Cutting Processes using Micro End-mill (측면가공에서 마이크로 엔드밀의 공구변형에 의한 절삭가공오차 보상에 관한 연구)

  • Jeon, Du-Seong;Seo, Tae-Il;Yoon, Gil-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.128-134
    • /
    • 2008
  • This paper presents a machining error compensation methodology due to deflection of micro cutting tools in side cutting processes. Generally in order to compensate for tool deflection errors it is necessary to carry out a series of simulations, cutting force prediction, tool deflection estimation and compensation method. These can induce numerous calculations and expensive costs. This study proposes an improved approach which can compensate for machining errors without simulation processes concerning prediction of cutting force and tool deflection. Based on SEM images of test cutting specimens, polynomial relationships between machining errors and corrected tool positions were induced. Taking into account changes of cutting conditions caused by tool position variation, an iterative algorithm was applied in order to determine corrected tool position. Experimental works were carried out to validate the proposed approach. Comparing machining errors of nominal cutting with those of compensated cutting, overall machining errors could be remarkably reduced.

A study on wear damage of SKD11 steel material for a cutting mold jig (SKD11 절단금형치구용 소재의 마모손상에 관한 연구)

  • Nam, Ki-Woo;Kim, Cheol-Su;Ahn, Seok-Hwan
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.5-13
    • /
    • 2016
  • This study is on wear damage of the material for a molding machine that be used at finally cutting of metal beam made in roll forming process of vehicle bump beam process line. SKD11 steel was used with the material for cutting mold jig. In the cutting mold jig, Ti diffusion heat treatment after vacuum heat treatment was carried out for upgrade of surface hardness and anti-wear. Also, the heat treatments by various methods were performed to compare the wear damage degree against above the existing heat treatment. Wear loss and friction coefficient were obtained from wear test. And, micro Vickers hardness values were compared with damaged parts or not of cutting mold jig. Micro Vickers hardness value appeared higher at the undamaged part by Ti diffusion heat treatment. The micro Vickers hardness well followed a two-parameter Weibull probability distribution.

Stability Analysis according to Material Alteration on Micro Stage for Micro Cutting Machine (재질 변화에 따른 초정밀가공기용 마이크로 스테이지의 안정성 해석)

  • 김재열;곽이구;김항우;안재신;김영석;김기태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.198-202
    • /
    • 2002
  • In this paper, stability of ultra precisio unit is analyzed, this unit is the kernel unit precision processing machine. According alteration of shape and material about stability investigation is performed. Through this stability investigation, trial is reduced in design and manufacture, at the time, we are accumulated foundation data for control.

  • PDF

Development of a New Probe to Realize Nano/Micro Mechanical Machining and In-Process Profile Measurement (나노인프로세스 형상계측 및 미세가공용 프로브의 개발)

  • Kweon, Hyun-Kyu;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.1
    • /
    • pp.75-84
    • /
    • 2003
  • In this paper, a new nano/micro-mechanical processing test machine was developed. This new test machine, which is based on the principle of the scanning force controlled probe microscope, can realize nano/micro-mechanical machining and in-process profile measurement. Experimental results of nano/micro indentation and scratching show that the controllable cutting depth of the test machine can be controlled by PZT actuator. Profile measurement of the machined surface has also been performed by using the test machine and a conventional AFM(Atomic Force Microscopy). A good agreement of the two measurement results have been achieved.

  • PDF

Structural Characteristic Analysis of an Ultra-Precision Machine for Machining Large-Surface Micro-Features (초정밀 대면적 미세 형상 가공기의 구조 특성 해석)

  • Kim, Seok-Il;Lee, Won-Jae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1469-1474
    • /
    • 2007
  • In recent years, research to machine large-surface micro-features has become important because of the light guide panel of a large-scale liquid crystal display and the bipolar plate of a high-capacity proton exchange membrane fuel cell. In this study, in order to realize the systematic design technology and performance improvements of an ultra-precision machine for machining the large-surface micro-features, a structural characteristic analysis was performed using its virtual prototype. The prototype consisted of gantry-type frame, hydrostatic feed mechanisms, linear motors, brushless DC servo motor, counterbalance mechanism, and so on. The loop stiffness was estimated from the relative displacement between the tool post and C-axis table, which was caused by a cutting force. Especially, the causes of structural stiffness deterioration were identified through the structural deformation analysis of sub-models.

  • PDF

A Study on Characteristics of the Precision Machined Surfaces by AFM Measurement (AFM 측정법에 의한 초정밀 가공면의 특성 평가 연구)

  • Kim, Jong-Kwan;Lee, Gab-Jo;Jung, Jong-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.80-85
    • /
    • 2007
  • High speed cutting is a machining process which cuts materials with the fast movement and rotation of a spindle in a machine tool. High speed cutting leaves a plastically deformed layer on the machined surface. This deformed layer affects in various forms to the surface roughness of machined parts such as the dimensional instability, the micro crack. The surface roughness is called surface integrity which is very important in precision cutting. This paper aims to study on the machined surfaces characteristics of aluminum alloy and brass by AFM(Atomic force microscope) measurement. The objective is contribution to ultra- precision cutting by exhibit foundation data of surface roughness and tool wear when parts are cutting with diamond tool at the factory.

Ultra Precision cutting Characteristics for Al 6061 (Al 6061의 초정밀 절삭특성)

  • 박상진
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.591-596
    • /
    • 2000
  • The needs of ultra precision machined parts is increase every days. But the experimental data of nonferrous metal is insufficient. The cutting behavior in micro cutting area is different from that of traditional cutting because of the size effect. Al6061 is widely used as optical parts such as LASER reflector's mirror or multimedia instrument. Al6061 opper is machined by ultra precision machine with natural diamond tool. From the experiment and discussion on the cutting force and worked surface roughness as the variable spindle speed, feed rate and depth of cut. As a result, the cutting force increases as the increasing depth of cut, but the worked surface roughness does not increase so much. The surface roughness is good when spindle sped is above 1200rpm, and feed rate is small. The influence of depth of cut is very small.

  • PDF