• Title/Summary/Keyword: Micro Aerial Vehicle

Search Result 43, Processing Time 0.023 seconds

3-D Indoor Navigation and Autonomous Flight of a Micro Aerial Vehicle using a Low-cost LIDAR (저가형 LIDAR를 장착한 소형 무인항공기의 3차원 실내 항법 및 자동비행)

  • Huh, Sungsik;Cho, Sungwook;Shim, David Hyunchul
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.3
    • /
    • pp.154-159
    • /
    • 2014
  • The Global Positioning System (GPS) is widely used to aid the navigation of aerial vehicles. However, the GPS cannot be used indoors, so alternative navigation methods are needed to be developed for micro aerial vehicles (MAVs) flying in GPS-denied environments. In this paper, a real-time three-dimensional (3-D) indoor navigation system and closed-loop control of a quad-rotor aerial vehicle equipped with an inertial measurement unit (IMU) and a low-cost light detection and ranging (LIDAR) is presented. In order to estimate the pose of the vehicle equipped with the two-dimensional LIDAR, an octree-based grid map and Monte-Carlo Localization (MCL) are adopted. The navigation results using the MCL are then evaluated by making a comparison with a motion capture system. Finally, the results are used for closed-loop control in order to validate its positioning accuracy during procedures for stable hovering and waypoint-following.

THE STUDY ON THE PROPELLER AERODYNAMIC CHARACTERISTIC OF MICRO AERIAL VEHICLE USING THE MRF METHOD. (MRF 기법을 이용한 초소형 비행체 프로펠러 공력특성 연구)

  • Choi, W.;Kim, J.H;Lee, K.T.;Park, C.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.32-36
    • /
    • 2010
  • This paper dealt with the flow simulation for the optimum designed propeller for Micro Aerial Vehicle, using a commercial CFD program(FLUENT). The propeller was modeled by the Multiple Reference Frame(MRF) method. For the validation of the computational method, the flow field analysis results for the propeller were compared with the flow analysis results, which are using Xfoil, for the optimum design, and with the wind tunnel data of a similar propeller model. By these validation processes, the reliability of MRF method was confirmed.

  • PDF

Development of Flight Antennas for Micro Aerial Vehicle (소형 무인항공기 탑재형 안테나 개발)

  • Kim Duck-Hwan;Lee Kyu-Hwan;Kim Young-Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.4 s.19
    • /
    • pp.20-25
    • /
    • 2004
  • The existing antenna that equipped with Micro Aerial Vehicle, microstrip antenna only can send and receive image signal because of limited bandwidth. But, proposed antenna that equipped with Micro Aerial Vehicle flight introduces tapered type patch antenna, also improves bandwidth then can transfer present location, altitude, movement speed. Furthermore, as a result of introduce stacked type, it transfers more quality of image signal, and represents most suitable performance in Korean peninsula that has many mountain peaks. In this paper, to transmit and receive the wideband signals with a antenna system, the wideband microstrip antenna is proposed and designed. This antenna operates at 2.4GHz. In this thesis, the resonance frequency of 2.4GHz and the reflective loss of the antenna of -22dB were calculated by measuring the fabricated Tapered Microstrip Patch Antenna which was designed with the resonance of 2.4GHz. The calculated gain and efficiency of antenna were 6.7dB and $60\%$ respectively. The characteristic of the bandwidth shows with $50\~60MHz$ which is $6.02\%$ at the basis of -l5dB reflective loss. The experimental results can be used in the characteristic of the resonators and this antenna produces a greatly enhanced bandwidth.

Delay Tolerant Packet Forwarding Algorithm Based on Location Estimation for Micro Aerial Vehicle Networks

  • Li, Shiji;Hu, Guyu;Ding, Youwei;Zhou, Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1377-1399
    • /
    • 2020
  • In search and rescue mission, micro aerial vehicles (MAVs) are typically used to capture image and video from an aerial perspective and transfer the data to the ground station. Because of the power limitation, a cluster of MAVs are required for a large search area, hence an ad-hoc wireless network must be maintained to transfer data more conveniently and fast. However, the unstable link and the intermittent connectivity between the MAVs caused by MAVs' movement may challenge the packet forwarding. This paper proposes a delay tolerant packet forwarding algorithm based on location estimation for MAV networks, called DTNest algorithm. In the algorithm, ferrying MAVs are used to transmit data between MAVs and the ground station, and the locations of both searching MAVs and ferrying MAVs are estimated to compute the distances between the MAVs and destination. The MAV that is closest to the destination is selected greedy to forward packet. If a MAV cannot find the next hop MAV using the greedy strategy, the packets will be stored and re-forwarded once again in the next time slot. The experiment results show that the proposed DTNest algorithm outperforms the typical DTNgeo algorithm in terms of packet delivery ratio and average routing hops.

Autonomous Tracking of Micro-Sized Flying Insects Using UAV: A Preliminary Results

  • Ju, Chanyoung;Son, Hyoung Il
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_1
    • /
    • pp.125-137
    • /
    • 2020
  • Tracking micro-sized insects is one of the challenges of protecting ecosystems and biodiversity. In this study, we propose an approach for the autonomous tracking of micro-sized flying insects, and develop an unmanned aerial vehicle (UAV)-based robotic system. The Kalman filter is applied to the received signal strength emitted from radio telemetry to estimate the position while reducing the measurement error and noise. The autonomous tracking strategy is a method in which the UAV rotates at one point to measure the signal strength and control its position in the strongest direction of the signal. We also design a system architecture comprising a tracking sensor system and a UAV system for micro-sized insects. The estimation and autonomous tracking of the target position by the proposed system are verified and evaluated through dynamic simulation. Therefore, in this study, we propose and validate a UAV-based tracking system for micro-sized flying insects, which has not been proposed in studies conducted thus far.

Development and application of a technique for detecting beach litter using a Micro-Unmanned Aerial Vehicle

  • Jang, Seon Woong;Kim, Dae Hyun;Chung, Yong Hyun;Seong, Ki Taek;Yoon, Hong-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.3
    • /
    • pp.351-366
    • /
    • 2014
  • The aim of this study was to develop software for beach litter detection that includes a Graphical User Interface (GUI) and uses images taken by a micro-unmanned aerial vehicle. Videos were taken over Doomo pebble beach, Sogye pebble beach, and Heungnam sand beach on the northeast coast of Geojedo (Geoje Island), Korea. Still images of actual beach litter were obtained from the videos. The image processing involved preprocessing, morphological image processing, and image recognition. Comparison with still images showing beach litter demonstrated that the software could generally detect litter larger than 50 cm in size such as Styrofoam buoys and circular fish traps (excluding small pixel-size ropes). Combining the proposed method with the conventional surveying approach is expected to enhance the accuracy of beach litter detection. The new technique will also aid in predicting the amount of beach litter generated along coastlines, which is currently difficult to monitor.

Numerical Investigation of Aerodynamic Characteristics around Micro Aerial Vehicle using Multi-Block Grid (MULTI-BLOCK 격자 기법을 이용한 초소형 비행체 주위 공력 특성 해석)

  • Kim,Yeong-Hun;Kim,U-Rye;Lee,Jeong-Sang;Kim,Jong-Am;No,O-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.8-16
    • /
    • 2003
  • Aerodynamic characteristics over Micro Aerial Vehicle(MAV) in low Reynolds number regime are numerically studied using 3-D unsteady, incompressible Navier-Stokes flow solver with single partitioning method for multi-block grid. For more efficient computation of unsteady flows, this flow solver is parallel-implemented with MPl(Message Passing Interface) programming method. Firstly, MAV wing with not complex geometry is considered and then, we analyze aerodynamic characteristics over full MAV configuration varying the angle of attack. Present computational results show a better agreement with the experimental data by MACDL(Micro Aerodynamic Control and Design Lab.), Seoul National University. We can also find the conceptually designed MAV by MACDL has the static stability.

Attitude Estimation Method through Attitude Comparison for Micro Aerial Vehicle (자세 비교를 통한 초소형 비행체의 자세 추정 기법)

  • 임종남;박찬국
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.63-70
    • /
    • 2006
  • Due to the small size and weight of micro aerial vehicle (MAV), only miniaturized MEMS type sensors are applicable for MAV autonomous flight system. In this paper, we propose a accelerometer and gyro mixing algorithm to improve an attitude performance of MEMS type sensors. The performance of the proposed mixing algorithm is compared with the performance of fuzzy-based mixing algorithm through simulation. The simulation results show that the attitude compensation method through the attitude compensation has better performance than the fuzzy-based mixing method for MAV attitude estimation.

Group Mobility Control Mechanism for Micro Unmanned Aerial Vehicle (소형 무인 비행체 집단의 이동성 제어 기법)

  • Nam, Su-Hyun;Choi, Myung-Whan;Choi, Hyo-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.4
    • /
    • pp.99-107
    • /
    • 2012
  • We propose control mechanism of UAV(Unmanned Aerial Vehicle) group for making the communication network to the base station after the target is found. We assume UAVs can communicate to each other by wireless LAN without existing communication infrastructure. UAVs started to fly in linear formation, after finding target, UAVs move to the base station to send the information about the target. At least one UAV stays the position that the target is found. This paper explains the mechanism supporting reliable connectivity during UAV group's flying. We verify the proposed scheme and evaluate the performance through NS-2 simulation. The proposed scheme can be applied to the disaster area and war zone, which the existing communication infrastructure cannot be worked.

A Study on the Security Framework in IoT Services for Unmanned Aerial Vehicle Networks (군집 드론망을 통한 IoT 서비스를 위한 보안 프레임워크 연구)

  • Shin, Minjeong;Kim, Sungun
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.897-908
    • /
    • 2018
  • In this paper, we propose a security framework for a cluster drones network using the MAVLink (Micro Air Vehicle Link) application protocol based on FANET (Flying Ad-hoc Network), which is composed of ad-hoc networks with multiple drones for IoT services such as remote sensing or disaster monitoring. Here, the drones belonging to the cluster construct a FANET network acting as WTRP (Wireless Token Ring Protocol) MAC protocol. Under this network environment, we propose an efficient algorithm applying the Lightweight Encryption Algorithm (LEA) to the CTR (Counter) operation mode of WPA2 (WiFi Protected Access 2) to encrypt the transmitted data through the MAVLink application. And we study how to apply LEA based on CBC (Cipher Block Chaining) operation mode used in WPA2 for message security tag generation. In addition, a modified Diffie-Hellman key exchange method is approached to generate a new key used for encryption and security tag generation. The proposed method and similar methods are compared and analyzed in terms of efficiency.