• Title/Summary/Keyword: Micro Accelerometer

Search Result 57, Processing Time 0.036 seconds

CMOS ROIC for MEMS Acceleration Sensor (MEMS 가속도센서를 위한 CMOS Readout 회로)

  • Yoon, Eun-Jung;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.18 no.1
    • /
    • pp.119-127
    • /
    • 2014
  • This paper presents a CMOS readout circuit for MEMS(Micro Electro Mechanical System) acceleration sensors. It consists of a MEMS accelerometer, a capacitance to voltage converter(CVC) and a second-order switched-capacitor ${\Sigma}{\Delta}$ modulator. Correlated-double-sampling(CDS) and chopper-stabilization(CHS) techniques are used in the CVC and ${\Sigma}{\Delta}$ modulator to reduce the low-frequency noise and DC offset. The sensitivity of the designed CVC is 150mV/g and its non-linearity is 0.15%. The duty cycle of the designed ${\Sigma}{\Delta}$ modulator output increases about 10% when the input voltage amplitude increases by 100mV, and the modulator's non-linearity is 0.45%. The total sensitivity is 150mV/g and the power consumption is 5.6mW. The proposed circuit is designed in a 0.35um CMOS process with a supply voltage of 3.3V and a operating frequency of 2MHz. The size of the designed chip including PADs is $0.96mm{\times}0.85mm$.

Development of MEMS Inclinometer Sensor System (MEMS형 경사계 센서의 유효성 평가)

  • Ha, Dae Woong;Kim, Jong Moon;Park, Hyo Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.271-274
    • /
    • 2013
  • Inclinometer sensors are widely applied in many fields. Especially in the field of construction of high-rise buildings also measure the horizontal and vertical help has been applied to monitor. Recent micro electro-mechanical system(MEMS) technology with the development of the many sensors have been developed. In this paper, a MEMS inclinometer is based on a MEMS accelerometer. The sensor can measure the angle of inclination using the relationship between static acceleration and gravity acceleration from an accelerometer. From this principle, inclinometer has been developed that has more accurate. The accuracy is proved by the experiment with laser displacement. Results in the experiment express high-accuracy, stability and economics of MEMS inclinometer. In conclusion, wireless MEMS inclinometer sensor is expected to be applicable in the areas of construction and many other industries with accurate and convenient monitoring system.

Research on MEMS for Motion Measurement of Solar Energy Platform at Sea (해상 태양광 부유체의 거동측정을 위한 MEMS 연구)

  • Yim, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.328-330
    • /
    • 2018
  • A floating body with a device that converts solar energy into electrical energy is moved by waves. To evaluate the safety of a floating body, measurement and interpretation of the float motion is required, which is generally based on 6 degrees of freedom motion. The 6 degree of freedom motion can be measured using MEMS (Micro-Electro Mechanical System), which features low power, small size and low cost. The key issue is, meanwhile, the low precision of the MEMS. In this study, the safety evaluation technique by analyzing the behavior of floating body using MEMS was examined. As a result of the study, it was found that the marine floating body can be modeled through the inertial measurement platform using the 3-axis accelerometer and the 3-axis gyroscope, and the safety of the float can be evaluated through this model.

  • PDF

Development of Multi-Sensor based River Monitoring Technology for River Flood Risk surveillance (하천 홍수 위험 감시를 위한 다중센서 기반 하천 관측 기술 개발)

  • Jang, Bong-Joo;Jung, In Taek
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.11
    • /
    • pp.1372-1382
    • /
    • 2020
  • This paper proposes a core technology for a micro river monitoring terminal device suitable for flood monitoring in small rivers and valleys. Our proposed device is basically equipped with a 77GHz radar, gyro and accelerometer sensors. To measure the flow velocity and water level, we proposed a signal processing technique that extracts pure water energy components from the observed Doppler velocity and reflection intensity from the radar. And to determine the stability of the river structure equipped with our device, we constantly monitor the displacement of the measured values of the gyro and accelerometer sensors. Experimental result verified that our method detects pure water energy in various river environments and distinguishes between flow velocity and water level well. And we verified that vibration and position change of structures can be determined through a gyro sensor. In future research, we will work to build a secure digital twin river network by lowering the cost of supplying RF-WAV devices. Also we expect our device to contribute to securing a preventive golden time in rivers.

Design of a smart MEMS accelerometer using nonlinear control principles

  • Hassani, Faezeh Arab;Payam, Amir Farrokh;Fathipour, Morteza
    • Smart Structures and Systems
    • /
    • v.6 no.1
    • /
    • pp.1-16
    • /
    • 2010
  • This paper presents a novel smart MEMS accelerometer which employs a hybrid control algorithm and an estimator. This scheme is realized by adding a sliding-mode controller to a conventional PID closed loop system to achieve higher stability and higher dynamic range and to prevent pull-in phenomena by preventing finger displacement from passing a maximum preset value as well as adding an adaptive nonlinear observer to a conventional PID closed loop system. This estimator is used for online estimation of the parameter variations for MEMS accelerometers and gives the capability of self testing to the system. The analysis of convergence and resolution show that while the proposed control scheme satisfies these criteria it also keeps resolution performance better than what is normally obtained in conventional PID controllers. The performance of the proposed hybrid controller investigated here is validated by computer simulation.

Development and Verification of ELT System Using the MEMS Accelerometer (MEMS 가속도계를 적용한 ELT 시스템 개발과 검증)

  • Lee, Sang-Chul;Lee, Dong-Kyu;Kang, Ja-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.294-299
    • /
    • 2010
  • ELT(Emergency Locator Transmitter) is used to send distress signal in the event of an aircraft crash. It is very useful but the ELT may transmit wrong signal caused by misjudging between crash and hard-landing. The reason of this problem is the low accuracy of the mechanical G-switch currently in use. To improve the ELT, we developed an ELT system using the MEMS(Micro Electro-Mechanical Sensor) accelerometer. The ELT system consists of acceleration data acquisition/analysis system, program of crash recognition, and GPS receiving system for the position information of an aircraft crash site. A free-drop table was developed for verification of the ELT system. The free-drop table was designed to replicate the acceleration and the pulse duration of the hard landing and the crash. By using the free-drop table, we showed that the ELT system performed well.

Stress characteristics of multilayer polysilicon for the fabrication of micro resonators (마이크로 공진 구조체 제작을 위한 다층 폴리실리콘의 스트레스 특성)

  • Choi, C.A.;Lee, C.S.;Jang, W.I.;Hong, Y.S.;Lee, J.H.;Sohn, B.K.
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.53-62
    • /
    • 1999
  • Micro polysilicon actuators, which are widely used in the field of MEMS (Microelectromechanical System) technology, were fabricated using polysilicon thin layers. Polysilicon deposition were carried out to have symmetrical layer structures with a LPCVD (Low Pressure Chemical Vapor Deposition) system, and we have measured physical characteristics by micro test patterns, such as bridges and cantilevers to verify minimal mechanical stress and stress gradient in the polysilicon layers according to the methods of mutilayer deposition, doping, and thermal treatment, also, analyzed the properties of each specimen, which have a different process condition, by XRD, and SIMS etc.. Finally, the fabricated planar polysilicon resonator, symmetrically stacked to $6.5{\mu}m$ thickness, showed Q of 1270 and oscillation ampitude of $5{\mu}m$ under DC 15V, AC 0.05V, and 1000 mtorr pressure. The developed micro polysilicon resonator can be utilized to micro gyroscope and accelerometer sensor.

  • PDF

Conceptual design and preliminary characterization of serial array system of high-resolution MEMS accelerometers with embedded optical detection

  • Perez, Maximilian;Shkel, Andrei
    • Smart Structures and Systems
    • /
    • v.1 no.1
    • /
    • pp.63-82
    • /
    • 2005
  • This paper introduces a technology for robust and low maintenance cost sensor network capable to detect accelerations below a micro-g in a wide frequency bandwidth (above 1,000 Hz). Sensor networks with such performance are critical for navigation, seismology, acoustic sensing, and for the health monitoring of civil structures. The approach is based on the fabrication of an array of high sensitivity accelerometers, each utilizing Fabry-Perot cavity with wavelength-dependent reflectivity to allow embedded optical detection and serialization. The unique feature of the approach is that no local power source is required for each individual sensor. Instead one global light source is used, providing an input optical signal which propagates through an optical fiber network from sensor-to-sensor. The information from each sensor is embedded onto the transmitted light as an intrinsic wavelength division multiplexed signal. This optical "rainbow" of data is then assessed providing real-time sensing information from each sensor node in the network. This paper introduces the Fabry-Perot based accelerometer and examines its critical features, including the effects of imperfections and resolution estimates. It then presents serialization techniques for the creation of systems of arrayed sensors and examines the effects of serialization on sensor response. Finally, a fabrication process is proposed to create test structures for the critical components of the device, which are dynamically characterized.

Analysis in Capacitor of Microaccelerometer Sensor Using Tunnelling Current Effect (턴널링 전류효과를 이용한 마이크로가속도 센서의 축전기부 해석)

  • Kim, O.S.
    • Journal of Power System Engineering
    • /
    • v.3 no.4
    • /
    • pp.57-62
    • /
    • 1999
  • The microaccelerometer using a tunnelling current effect concept has the potential of high performance, although it requires slightly complex signal-processing circuit for servo-system. The paddle of micro accelerometer is pulled to have the gap width of about 2nm which almost allows the flow tunnelling current. This paper demonstrates at capacitor of microaccelerometer the use of the coupled thermo-electric analysis for voltage, current, heat flux and Joule heating then tunnelling current flows. Two electrodes are applied to the microaccelerometer producing a unform difference of temperature gradient and electric potential between the paddle and the substrate.

  • PDF

A Design of Digital Inclinometer for Measuring Postural Balance (Preliminary Study) (자세 균형 측정을 위한 디지털 경사계 설계)

  • Myoung, Hyoun-Seok;Lee, Hyo-Ki;Lee, Kyoung-Joung;Kwon, Oh-Yun
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.238-240
    • /
    • 2006
  • In this study, we designed a digital inclinometer to measure the angle and acceleration signals. Digital inclinometer consists of a tilt sensor, accelerometer, one-chip micro controller and BlueTooth module. Using the developed system, we made an experiment with Roll. The subject is laid on the Roll and rises each foot $90^{\circ}$ and $45^{\circ}$ up, and measures angle and acceleration signals with 100Hz sampling frequency. Through several tests, we could find the possibilities and usefulness which can evaluate normality / abnormality of body posture objectively.

  • PDF