• Title/Summary/Keyword: Micro/Nano-Patterning

검색결과 75건 처리시간 0.03초

나노입자 마스크를 이용하여 제작한 초소수성 마이크로-나노 혼성구조 (Fabrication of Superhydrophobic Micro-Nano Hybrid Structures by Reactive Ion Etching with Au Nanoparticle Masks)

  • 이초연;윤석본;장건익;윤완수
    • 한국진공학회지
    • /
    • 제19권4호
    • /
    • pp.300-306
    • /
    • 2010
  • 소수성 고분자를 사용하여 제작한 마이크로구조에 금 나노입자를 마스크로 이용하는 반응성이온식각(RIE: Reactive Ion Etching)을 적용하여 초소수성을 갖는 마이크로-나노 혼성구조를 제작하였다. 소수성 고분자로는 PFPE (perfluoropolyether bisurethane methacrylate)를 사용하였으며 마이크로 단일구조는 PDMS (polydimethylsiloxane) 몰드를 사용하는 스탬핑 방식으로 제작하였다. 다양한 형태로 제작한 PFPE 마이크로 단일구조와 마이크로-나노 혼성구조의 표면 접촉각을 측정하여 표면 미세구조에 따른 소수성의 변화를 관찰하였다. 마이크로 단일구조의 경우 접촉각은 안정적인 값을 보이지 못하였으나 단일 구조에 나노입자를 사용한 식각을 적용해 나노구조가 형성됨에 따라 $150^{\circ}$ 이상의 접촉각을 갖는 초소수성 표면이 매우 높은 재현성으로 용이하게 형성되었다.

'아마데우스' 이온빔 나노 패터닝 소프트웨어와 나노 가공 특성 ('AMADEUS' Software for ion Beam Nano Patterning and Characteristics of Nano Fabrication)

  • 김흥배
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.322-325
    • /
    • 2005
  • The shrinking critical dimensions of modern technology place a heavy requirement on optimizing feature shapes at the micro- and nano scale. In addition, the use of ion beams in the nano-scale world is greatly increased by technology development. Especially, Focused ion Beam (FIB) has a great potential to fabricate the device in nano-scale. Nevertheless, FIB has several limitations, surface swelling in low ion dose regime, precipitation of incident ions, and the re-deposition effect due to the sputtered atoms. In recent years, many approaches and research results show that the re-deposition effect is the most outstanding effect to overcome or reduce in fabrication of micro and nano devices. A 2D string based simulation software AMADEUS-2D $(\underline{A}dvanced\;\underline{M}odeling\;and\;\underline{D}esign\;\underline{E}nvironment\;for\;\underline{S}putter\;Processes)$ for ion milling and FIB direct fabrication has been developed. It is capable of simulating ion beam sputtering and re-deposition. In this paper, the 2D FIB simulation is demonstrated and the characteristics of ion beam induced direct fabrication is analyzed according to various parameters. Several examples, single pixel, multi scan box region, and re-deposited sidewall formation, are given.

  • PDF

Pulsed Electrochemical Deposition for 3D Micro Structuring

  • Park, Jung-Woo;Ryu, Shi-Hyoung;Chu, Chong-Nam
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권4호
    • /
    • pp.49-54
    • /
    • 2005
  • In this paper, micro structuring technique using localized electrochemical deposition (LECD) with ultra short pulses was investigated. Electric field in electrochemical cell was localized near the tool tip end region by applying pulses of a few hundreds of nano second duration, Pt-Ir tip was used as a counter electrode and copper was deposited on the copper substrate in mixed electrolyte of 0.5 M $CuSO_4$ and 0.5 M $H_2SO_4$, The effectiveness of this technique was verified by comparison with ECD using DC voltage. The deposition characteristics such as size, shape, surface, and structural density according to applied voltage and pulse duration were investigated. The proper condition was selected based on the results of the various experiments. Micro columns less than $10{\mu}m$ in diameter were fabricated using this technique. The real 3D micro structures such as micro spring and micro pattern were made by the presented method.

잉크젯 기법을 이용한 은 미세라인 형성 (Fabrication of Silver Micro Lines by Ink-Jet Method)

  • 변종훈;서동수;최영민;장현주;공기정;이정오;류병환
    • 한국세라믹학회지
    • /
    • 제41권10호
    • /
    • pp.788-791
    • /
    • 2004
  • 입자크기가 수 nm인 고농도 은 나노 졸을 이용하여 잉크젯 기법으로 은 미세라인을 형성하고자 하였다. 고분자전해질을 사용하여 합성한 $10wt\%$ 농도의 은 나노 졸의 입자크기는 10nm 이하였으며, 은 나노 졸을 이용한 미세 라인의 인쇄특성은 은 나노 졸의 접촉각에 매우 깊은 관계를 갖고 있었다. 순수한 ITO 기판에서 은 나노 졸은 높은 접촉각을 나타내었으며, dot 형상이 나타났다. 그러나 100ppm의 Polyethylenimine(PEI)을 코팅한 ITO 기판은 젖음성이 크게 개선되었으며, 잉크젯 기법을 이용하여 $60\~100{\mu}m$의 선폭을 갖는 은 나노 졸의 미세라인 형성이 가능함을 확인할 수 있었다.

직접패턴형 SnO2 박막의 전도성 나노구조체 첨가연구 (Direct-Patternable SnO2 Thin Films Incorporated with Conducting Nanostructure Materials)

  • 김현철;박형호
    • 한국재료학회지
    • /
    • 제20권10호
    • /
    • pp.513-517
    • /
    • 2010
  • There have been many efforts to modify and improve the properties of functional thin films by hybridization with nano-sized materials. For the fabrication of electronic circuits, micro-patterning is a commonly used process. For photochemical metal-organic deposition, photoresist and dry etching are not necessary for microscale patterning. We obtained direct-patternable $SnO_2$ thin films using a photosensitive solution containing Ag nanoparticles and/or multi-wall carbon nanotubes (MWNTs). The optical transmittance of direct-patternable $SnO_2$ thin films decreased with introduction of nanomaterials due to optical absorption and optical scattering by Ag nanoparticles and MWNTs, respectively. The crystallinity of the $SnO_2$ thin films was not much affected by an incorporation of Ag nanoparticles and MWNTs. In the case of mixed incorporation with Ag nanoparticles and MWNTs, the sheet resistance of $SnO_2$ thin films decreased relative to incorporation of either single component. Valence band spectral analyses of the nano-hybridized $SnO_2$ thin films showed a relation between band structural change and electrical resistance. Direct-patterning of $SnO_2$ hybrid films with a line-width of 30 ${\mu}m$ was successfully performed without photoresist or dry etching. These results suggest that a micro-patterned system can be simply fabricated, and the electrical properties of $SnO_2$ films can be improved by incorporating Ag nanoparticles and MWNTs.

롤압연, 압출, 단조 등 전통 기계가공법의 모사 응용을 통한 다양한 나노패턴의 대면적 연속생산 기술 구현 (Development of Continuous and Scalable Nanomanufacturing Technologies Inspired by Traditional Machining Protocols Such as Rolling, Pullout, and Forging)

  • 옥종걸;곽문규
    • 한국생산제조학회지
    • /
    • 제24권2호
    • /
    • pp.198-202
    • /
    • 2015
  • We present a series of simple but novel nanopatterning methodologies inspired by traditional mechanical machining processes involving rolling, pullout, and forging. First, we introduce roll-to-roll nanopatterning, which adapts conventional rolling for continuous nanopatterning. Then, nano-inscribing and nano-channel lithography are demonstrated, whereby seamless nanogratings can be continuously pulled out, as in a pullout process. Finally, we discuss vibrational indentation micro- and nanopatterning. Similarly to the forging/indentation process, this technique employs high-frequency vertical vibration to indent periodic micro/nanogratings onto a horizontally fed substrate. We discuss the basic principles of each process, along with its advantages, disadvantages, and potential applications. Adopting mature and reliable traditional technologies for small-scale machining may allow continuous nanopatterning techniques to cope with scalable and low-cost nanomanufacturing in a more productive and trustworthy way.

능동적 박막 펌핑에 의한 파운틴 펜 나노 리소그래피 유동 특성에 관한 연구 (A Study on Flow Characteristics of Fountain-pen Nano-Lithography with Active Membrane Pumping)

  • 이진형;이영관;이성근;이석한;김윤제;김훈모
    • 대한기계학회논문집B
    • /
    • 제30권8호
    • /
    • pp.722-730
    • /
    • 2006
  • In this study, the flow characteristics of a FPN (Fountain Pen Nano-Lithography) using active membrane pumping are investigated. The FPN has integrated chamber, micro channel, and high capacity reservoir for continuous ink feed. The most important aspect in this probe provided control of fluid injection using active membrane pumping in chamber. The flow rates in channel by capillary force are theoretically analyzed, including the control of the mass flow rates by the deflection of the membrane. The above results are compared with the numerical simulations that calculated by commercial code, FLUENT. The velocity of the fluid in micro channel shows linear behaviors. And the mass flows are proportional to the second order function of the pumping pressure that is imposed to the membrane.